Staff profile
Affiliation |
---|
Professor in the Department of Biosciences |
Biography
C. elegans research lab
The Worm
We study the nematode worm Caenorhabditis elegans. This model system provides controlled conditions and large numbers of animals to understand basic biological processes such as ageing and host:microbe interactions using genetics, biochemistry and microscopy.
Bacteria and Ageing
Animals have co-evolved with microbes, so understanding these interactions is vital to understanding animal biology. The human gut microbiota is an area of intense study but it is difficult to do controlled experiments
In the lab, C. elegans is cultured with the live bacteria Escherichia coli as a food source. We study both E. coli and C. elegans to understand this animal: microbe interaction.
Inhibiting folate synthesis in E. coli slows ageing in C. elegans without slowing the growth of the bacteria or the worm. E. coli synthesises more folate than it needs for growth and we think that this excess folate does something in the bacteria that causes the bacteria to accelerate ageing of the animal.
We are testing this hypothesis, investigating molecular mechanisms and exploring relevance to human microbiota and health.
Folic acid supplements
We have found that folic acid, the synthetic compound used to prevent folate deficiency is taken up by C. elegans via E. coli, in a pathway that relies of folic acid breakdown. We found that folic acid supplements contain breakdown products that would allow this path to be taken in humans. Blog
Automated analysis of ageing
Together with Chris Saunter we have invented a way to automate measurements of healthspan in many large populations of worms simultaneously. We organised an international workshop in this field and we have started a spinout company called Magnitude Biosciences to test drugs and other interventions to prolong healthspan
Making therapeutic proteins
In another project, we are using C. elegans to make recombinant proteins from parasitic nematodes that could be used to treat diseases of the immune system such as asthma or rheumatoid arthritis. The intention is to enable translation to a therapy and reduce the use of lab rodents. See video
Current lab members (in order of appearance)
David Weinkove (Twitter: @dweinkove, appearance at Bright Club NE, How to pronounce Weinkove (courtesy of cousin Ben))
Adelaide Raimundo
Sushmita Maitra
Giulia Zavagno
Hannah Raddings
Past lab members (other than 3rd year undergraduate project students)
Andrea Bender, Marjanne Bourgois, James Pauw, Nikolin Oberleitner, Gonçalo Correia, Natasha Chetina, Inna Feyst, Harry Blandy, Marta Cipinska, David Bradley, Shona Lee, Noel Helliwell, Jie Jia, Razan Bakheet, Daniel Weintraub, Bhupinder Virk, Lucy Lancaster, Zoe Walmsley, Giulia Zavagno, Claire Maynard, Fiona Hair, Kasia Zmarzly, Craig Manning, James Groombridge.
Research interests
- C. elegans
- E. coli
- Ageing
- Host:microbe interactions
- Microbial folates
Esteem Indicators
- 2022: Chair of The British Society for Research on Ageing: Appointed Chair of The British Society for Research on Ageing
Publications
Chapter in book
Journal Article
- Weinkove, D. (online). Folates, bacteria and ageing: insights from the model organism. Proceedings of the Nutrition Society, https://doi.org/10.1017/S0029665124004890
- Fasseas, M. K., Maitra, S., Tintoré, M., Cuñé, J., de Lecea, C., & Weinkove, D. (2024). Combinations of bacterial probiotics and yeast postbiotics influence fat deposition and growth in the nematode C. elegans. PharmaNutrition, 29, Article 100404. https://doi.org/10.1016/j.phanu.2024.100404
- Jongsma, E., Grigolon, G., Baumann, J., Weinkove, D., Ewald, C. Y., Wandrey, F., & Grothe, T. (2024). Timut Pepper Extract Slows Age-Dependent Decline of Mobility and Collagen Loss and Promotes Longevity. Nutrients, 16(13), Article 2122. https://doi.org/10.3390/nu16132122
- Zavagno, G., Raimundo, A., Kirby, A., Saunter, C., & Weinkove, D. (2024). Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. GeroScience, 46, 2281–2293. https://doi.org/10.1007/s11357-023-00998-w
- Xue, F., Ragno, M., Blackburn, S. A., Fasseas, M., Maitra, S., Liang, M., Rai, S., Mastroianni, G., Tholozan, F., Thompson, R., Sellars, L., Hall, R., Saunter, C., Weinkove, D., & Ezcurra, M. (2024). New tools to monitor Pseudomonas aeruginosa infection and biofilms in vivo in C. elegans. Frontiers in Cellular and Infection Microbiology, 14, Article 1478881. https://doi.org/10.3389/fcimb.2024.1478881
- Reigada, I., Kapp, K., Maynard, C., Weinkove, D., Valero, M. S., Langa, E., Hanski, L., & Gómez-Rincón, C. (2022). Alterations in Bacterial Metabolism Contribute to the Lifespan Extension Exerted by Guarana in Caenorhabditis elegans. Nutrients, 14(9), Article 1986. https://doi.org/10.3390/nu14091986
- Les, F., Valero, M. S., Moliner, C., Weinkove, D., López, V., & Gómez-Rincón, C. (2021). Jasonia glutinosa (L.) DC., a Traditional Herbal Tea, Exerts Antioxidant and Neuroprotective Properties in Different In Vitro and In Vivo Systems. Biology, 10(5), Article 443. https://doi.org/10.3390/biology10050443
- Tataridas-Pallas, N., Thompson, M. A., Howard, A., Brown, I., Ezcurra, M., Wu, Z., Silva, I. G., Saunter, C. D., Kuerten, T., Weinkove, D., Blackwell, T. K., & Tullet, J. M. (2021). Neuronal SKN-1B modulates nutritional signalling pathways and mitochondrial networks to control satiety. PLoS Genetics, 17(3), Article e1009358. https://doi.org/10.1371/journal.pgen.1009358
- Weinkove, D., & Zavagno, G. (2021). Applying C. elegans to the Industrial Drug Discovery Process to Slow Aging. Frontiers in Aging, 2, Article 740582. https://doi.org/10.3389/fragi.2021.740582
- Maynard, C., & Weinkove, D. (2020). Bacteria increase host micronutrient availability: mechanisms revealed by studies in C. elegans. Genes & Nutrition, 15, Article 4. https://doi.org/10.1186/s12263-020-00662-4
- Reigada, I., Moliner, C., Valero, M. S., Weinkove, D., Langa, E., & Gómez Rincón, C. (2020). Antioxidant and Antiaging Effects of Licorice on the Caenorhabditis elegans Model. Journal of Medicinal Food, 23(1), https://doi.org/10.1089/jmf.2019.0081
- Maynard, C., Cummins, I., Green, J., & Weinkove, D. (2018). A bacterial route for folic acid supplementation. BMC Biology, 16, Article 67. https://doi.org/10.1186/s12915-018-0534-3
- Lundquist, M. R., Goncalves, M. D., Loughran, R. M., Possik, E., Vijayaraghavan, T., Yang, A., Pauli, C., Ravi, A., Verma, A., Yang, Z., Johnson, J. L., Wong, J. C., Ma, Y., Hwang, K. S.-K., Weinkove, D., Divecha, N., Asara, J. M., Elemento, O., Rubin, M. A., Kimmelman, A. C., …Emerling, B. M. (2018). Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy. Molecular Cell, 70(3), 531-544.e9. https://doi.org/10.1016/j.molcel.2018.03.037
- Weinkove, D. (2018). On microbes, aging and the worm: an interview with David Weinkove. BMC Biology, 16(1), Article 125. https://doi.org/10.1186/s12915-018-0600-x
- Hastings, J., Mains, A., Artal-Sanz, M., Bergmann, S., Braeckman, B. P., Bundy, J., Cabreiro, F., Dobson, P., Ebert, P., Hattwell, J., Hefzi, H., Houtkooper, R. H., Jelier, R., Joshi, C., Kothamachu, V. B., Lewis, N., Lourenço, A. B., Nie, Y., Norvaisas, P., Pearce, J., …Casanueva, O. (2017). WormJam: A consensus C. elegans Metabolic Reconstruction and Metabolomics Community and Workshop Series. Worm (Austin, Tex. Online), 6(2), Article e1373939. https://doi.org/10.1080/21624054.2017.1373939
- Virk, B., Jia, J., Maynard, C., Raimundo, A., Lefebvre, J., Richards, S., Chetina, N., Liang, Y., Helliwell, N., Cipinska, M., & Weinkove, D. (2016). Folate acts in E. coli to accelerate C. elegans aging independently of bacterial biosynthesis. Cell Reports, 14(7), 1611-1620. https://doi.org/10.1016/j.celrep.2016.01.051
- Zhang, C., Yin, A., Li, H., Wang, R., Wu, G., Shen, J., Zhang, M., Wang, L., Hou, Y., Ouyang, H., Zhang, Y., Zheng, Y., Wang, J., Lv, X., Wang, Y., Zhang, F., Zeng, B., Li, W., Yan, F., Zhao, Y., …Zhao, L. (2015). Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine, 2(8), 968-984. https://doi.org/10.1016/j.ebiom.2015.07.007
- Weinkove, D. (2013). From aging worms to the influence of the microbiota: an interview with David Weinkove. BMC Biology, 11, https://doi.org/10.1186/1741-7007-11-94
- Cabreiro, F., Au, C., Leung, K.-Y., Vergara-Irigaray, N., Cochemé, H., Noori, T., Weinkove, D., Schuster, E., Greene, N., & Gems, D. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell, 153(1), 228-239. https://doi.org/10.1016/j.cell.2013.02.035
- Virk, B., Correia, G., Dixon, D., Feyst, I., Jia, J., Oberleitner, N., Briggs, Z., Hodge, E., Edwards, R., Ward, J., Gems, D., & Weinkove, D. (2012). Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biology, 10(1), Article 67. https://doi.org/10.1186/1741-7007-10-67
- Panbianco, C., Weinkove, D., Zanin, E., Jones, D., Divecha, N., Gotta, M., & Ahringer, J. (2008). A casein kinase 1 and PAR proteins regulate asymmetry of a PIP2 synthesis enzyme for asymmetric spindle positioning. Developmental Cell, 15(2), 198-208. https://doi.org/10.1016/j.devcel.2008.06.002
- Weinkove, D., Bastiani, M., Chessa, T., Joshi, D., Hauth, L., Cooke, F., Divecha, N., & Schuske, K. (2008). Overexpression of PPK-1, the Caenorhabditis elegans Type I PIP kinase, inhibits growth cone collapse in the developing nervous system and causes axonal degeneration in adults. Developmental Biology, 313(1), 384-397. https://doi.org/10.1016/j.ydbio.2007.10.029
- Bass, T., Weinkove, D., Houthoofd, K., Gems, D., & Partridge, L. (2007). Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mechanisms of Ageing and Development, 128(10), 546-552. https://doi.org/10.1016/j.mad.2007.07.007
- Weinkove, D., Halstead, J., Gems, D., & Divecha, N. (2006). Long-term starvation and ageing induce AGE-1/PI 3-kinase-dependent translocation of DAF-16/FOXO to the cytoplasm. BMC Biology, 4, Article 1. https://doi.org/10.1186/1741-7007-4-1
- Jansen, G., Weinkove, D., & Plasterk, R. (2002). The G-protein gamma subunit gpc-1 of the nematode C. elegans is involved in taste adaptation. The EMBO Journal, 21(5), 986-994. https://doi.org/10.1093/emboj/21.5.986
- Weinkove, D., & Leevers, S. (2000). The genetic control of organ growth: insights from Drosophila. Current Opinion in Genetics and Development, 10(1), 75-80. https://doi.org/10.1016/s0959-437x%2899%2900042-8
- Weinkove, D., Neufeld, T., Twardzik, T., Waterfield, M., & Leevers, S. (1999). Regulation of imaginal disc cell size, cell number and organ site by Drosophila class I-A phosphoinositide 3-kinase and its adaptor. Current Biology, 9(18), 1019-1029. https://doi.org/10.1016/s0960-9822%2899%2980450-3
- Weinkove, D., Poyatos, J., Greiner, H., Oltra, E., Avalos, J., Fukshansky, L., Barrero, A., & Cerda-Olmedo, E. (1998). Mutants of Phycomyces with decreased gallic acid content. Fungal Genetics and Biology, 25(3), 196-203. https://doi.org/10.1006/fgbi.1998.1098
- Weinkove, D., Leevers, S., MacDougall, L., & Waterfield, M. (1997). p60 is an adaptor for the Drosophila phosphoinositide 3-kinase, Dp110. Journal of Biological Chemistry, 272(23), 14606-14610. https://doi.org/10.1074/jbc.272.23.14606
- Leevers, S., Weinkove, D., MacDougall, L., Hafen, E., & Waterfield, M. (1996). The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. The EMBO Journal, 15(23), 6584-6594
Other (Print)