Staff profile
Professor Tony Fawcett
Pro-Vice-Chancellor (Education)
Affiliation | Telephone |
---|---|
Pro-Vice-Chancellor (Education) in the Vice-Chancellor's Office | |
Professor in the Department of Biosciences | +44 (0) 191 33 41328 |
Biography
There is an increasing demand for plant oils not only for human food and animal feed but also as renewable sources of chemicals and biofuels. This increased demand has shown a doubling every 8 years over the last four decades and is likely to continue in the future. With a limitation on agricultural land, the main way to increase production is to increase yields and for this to be realized a thorough knowledge of the biosynthesis of plant oils is needed, including how oil quality and quantity is controlled. Recently, we made a first experimental study of overall regulation of storage oil accumulation in oilseed rape, which we analyzed by flux control analysis. This showed that it is the lipid assembly, rather than fatty acid biosynthesis, that is the most important limitation on the biosynthetic process. Currently we are dissecting the lipid assembly components to identify targets with significant control for targeted future crop improvement strategies.
Research interests
- plant lipid biochemistry
Publications
Journal Article
- Fenyk, S., Woodfield, H. K., Romsdahl, T. B., Wallington, E. J., Bates, R. E., Fell, D. A., Chapman, K. D., Fawcett, T., & Harwood, J. L. (2022). Overexpression of phospholipid: diacylglycerol acyltransferase in Brassica napus results in changes in lipid metabolism and oil accumulation. Biochemical Journal, 479(6), https://doi.org/10.1042/bcj20220003
- Liao, P., Lechon, T., Romsdahl, T., Woodfield, H., Fenyk, S., Fawcett, T., Wallington, E., Bates, R. E., Chye, M.-L., Chapman, K. D., Harwood, J. L., & Scofield, S. (2022). Transgenic manipulation of triacylglycerol biosynthetic enzymes in B. napus alters lipid-associated gene expression and lipid metabolism. Scientific Reports, 12(1), https://doi.org/10.1038/s41598-022-07387-x
- Woodfield, H. K., Fenyk, S., Wallington, E., Bates, R. E., Brown, A., Guschina, I. A., Marillia, E.-F., Taylor, D. C., Fell, D., Harwood, J. L., & Fawcett, T. (2019). Increase in lysophosphatidate acyltransferase activity in oilseed rape (Brassica napus L.) increases seed triacylglycerol content despite its low intrinsic flux control coefficient. New Phytologist, 224(2), 700-711. https://doi.org/10.1111/nph.16100
- Spronken-Smith, R., Sandover, S., Partridge, L., Leger, A., Fawcett, T., & Burd, L. (2018). The Challenges of Going Global with Undergraduate Research: The Matariki Undergraduate Research Network. Scholarship and practice of undergraduate research, 2(2), 64-72. https://doi.org/10.18833/spur/2/2/8
- Ramli, U., Tang, M., Quant, P., Guschina, I., Fawcett, T., & Harwood, J. (2014). Informed metabolic engineering of oil crops using control analysis. Biocatalysis and Agricultural Biotechnology, 3(1), 49-52. https://doi.org/10.1016/j.bcab.2013.12.001
- Harwood, J., Ramli, U., Tang, M., Quant, P., Weselake, R., Fawcett, T., & Guschina, I. (2013). Regulation and enhancement of lipid accumulation in oil crops: The use of metabolic control analysis for informed genetic manipulation. European Journal of Lipid Science and Technology, 115(11), 1239-1246. https://doi.org/10.1002/ejlt.201300257
- Tang, M., Guschina, I., O’Hara, P., Slabas, A., Quant, P., Fawcett, T., & Harwood, J. (2012). Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation. New Phytologist, 196(2), 414-426. https://doi.org/10.1111/j.1469-8137.2012.04262.x
- Mina, J., Okada, Y., Wansadhipathi-Kannangara, N., Pratt, S., Shams-Eldin, H., Schwarz, R., Steel, P., Fawcett, T., & Denny, P. (2010). Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase. Plant Molecular Biology, 73(4-5), 399-407. https://doi.org/10.1007/s11103-010-9626-3
- O'Hara, P., Slabas, A. R., & Fawcett, T. (2007). Antisense expression of 3-oxoacyl-ACP reductase affects whole plant productivity and causes collateral changes in activity of fatty acid synthase components. Plant & Cell Physiology, 48(5), 736-744. https://doi.org/10.1093/pcp/pcm041
- Brown, A., Affleck, V., Fawcett, T., & Slabas, A. (2006). Tandem affinity purification tagging of fatty acid biosynthetic enzymesin Synechocystis sp PCC6803 and Arabidopsis thaliana. Journal of Experimental Botany, 57(7), 1563-1571. https://doi.org/10.1093/jxb/erj150
- Fuller, E., Elmer, C., Nattress, F., Ellis, R., Horne, G., Cook, P., & Fawcett, T. (2005). Beta-lactam resistance in Staphylococcus aureus cells that do not require a cell wall for integrity. Antimicrobial Agents and Chemotherapy, 49(12), 5075-5080. https://doi.org/10.1128/aac.49.12.5075-5080.2005
- Page, J., Fawcett, T., Natrass, F., & Cook, P. (2004). An in vitro comparison of the adherence ability of cell wall deficient Staphylococcus aureus versus cell wall competent S. aureus. International Journal of Antimicrobial Agents, 24(December), S208-S209
- Fuller, E., Nattress, F., Horne, G., Cook, P., & Fawcett, T. (2003). Stable changes in antibiotic sensitivity and cell wall structure associated with a transient cell wall-deficient phenotype in Staphylococcus aureus. Thorax, 58,
- Slabas, A., Kroon, J., Scheirer, T., Gilroy, J., Hayman, M., Rice, D., Turnbull, A., Rafferty, J., Fawcett, T., & Simon, W. (2002). Squash glycerol-3-phosphate (1)-acyltransferase - Alteration of substrate selectivity and identification of arginine and lysineresidues important in catalytic activity. Journal of Biological Chemistry, 277(46), 43918-43923. https://doi.org/10.1074/jbc.m206429200
- Slabas, A., White, A., O'Hara, P., & Fawcett, T. (2002). Investigations into the regulation of lipid biosynthesis in Brassica napus using antisense down-regulation. Biochemical Society Transactions, 30, 1056-1059
- O'Hara, P., Slabas, A., & Fawcett, T. (2002). Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiology, 129(1), 310-320. https://doi.org/10.1104/pp.010956
- Hayman, M., Fawcett, T., & Slabas, A. (2002). Kinetic mechanism and order of substrate binding forsn-glycerol-3-phosphate acyltransferase from squash (Cucurbita moschata). FEBS Letters, 514(2-3), 281-284
- Elmer, C., Cook, P., Nattress, F., Cheung, P., & Fawcett, T. (2002). Staphylococcus aureus cell wall deficient bacteria are highly resistant to cell wall active antibiotics and have an altered profile to other classes of antibiotic. Thorax, 57(Suppl. 3),
- Turnbull, A., Rafferty, J., Sedelnikova, S., Slabas, A., Scheirer, T., Kroon, J., Simon, J., Fawcett, T., Nishida, I., Murata, N., & Rice, D. (2001). Analysis of the Structure, Substrate Specificity, and Mechanism of Squash Glycerol-3-Phosphate (1)-Acyltransferase. Structure, 9(5), 347-353. https://doi.org/10.1016/s0969-2126%2801%2900595-0
- O'Hara, P., Slabas, A., & Fawcett, T. (2001). Fatty acid synthesis in developing leaves of Brassica napus in relation to leaf growth and changes in activity of 3-oxoacyl-ACP reductase. FEBS Letters, 488(1-2), 18-22. https://doi.org/10.1016/s0014-5793%2800%2902406-6
- O'Hara, P., Slabas, A., & Fawcett, T. (2000). Expression of fatty acid and lipid biosynthetic genes. Biochemical Society Transactions, 28, 617-619
- O'Hara, P., Slabas, A., & Fawcett, T. (2000). Modulation of fatty acid biosynthesis by antisense beta-keto reductaseexpression. Biochemical Society Transactions, 28, 613-615
- Slabas, A., Simon, W., Schierer, T., Kroon, J., Fawcett, T., Hayman, M., Gilroy, J., Nishida, I., Murata, N., Rafferty, J., Turnbull, A., & Rice, D. (2000). Plant glycerol-3-phosphate-1-acyltransferase (GPAT): structure selectivity studies. Biochemical Society Transactions, 28, 677-679
- Hayman, M., Fawcett, T., Schierer, T., Simon, J., Kroon, J., Gilroy, J., Rice, D., Rafferty, J., Turnbull, A., Sedelnikova, S., & Slabas, A. (2000). Mutagenesis of squash (Cucurbita moschata) glycerol-3-phosphateacyltransferase (GPAT) to produce an enzyme with altered substrateselectivity. Biochemical Society Transactions, 28, 680-681
- Fawcett, T., Copse, C., Simon, J., & Slabas, A. (2000). Kinetic mechanism of NADH-enoyl-ACP reductase from Brassica napus. FEBS Letters, 484(2), 65-68
- Fawcett, T., Simon, J., Swinhoe, R., Shanklin, J., Nishida, I., Christie, W., & Slabas, A. (1994). Expression of mRNA and steady-state levels of protein isoforms of enoyl-ACP reductase from Brassica napus. Plant Molecular Biology, 26(1), 155-163
- Elborough, K., Swinhoe, R., Winz, R., KROON, J., Farnsworth, L., Fawcett, T., Martinezrivas, J., & Slabas, A. (1994). Isolation of cDNAs from Brassica napus encoding the biotin-binding and transcarboxylase domains of acetyl-CoA carboxylase: assignment of the domain structure in a full-length Arabidopsis thaliana genomic clone. Biochemical Journal, 301(2), 599-605. https://doi.org/10.1042/bj3010599
- Rafferty, J., Simon, J., Stuitje, A., Slabas, A., Fawcett, T., & Rice, D. (1994). Crystallization of the NADH-specific enoyl acyl carrier protein reductase from Brassica napus. Journal of Molecular Biology, 237(2), 240-242