
libcmatrix (release 3)
(November 15, 2005)

Contents

1 Introduction 3
1.1 Using libcmatrix . 3
1.2 Combining cmatrix with other code . 4

2 General features 5
2.1 Standard functions and arguments . 5
2.2 “undefined” and non-dynamic objects . 7

3 The complex data type 8

4 The Matrix<T> class 8
4.1 Complex matrices . 9
4.2 Creation and deletion of cmatrix . 9
4.3 Information functions . 10
4.4 Relation to STL containers . 13
4.5 Mathematical operations . 13
4.6 General operations . 14
4.7 Advanced mathematical operations . 15
4.8 Input/output . 17
4.9 Real and diagonal matrices . 20

5 Other storage types 21
5.1 The List<T> class . 21
5.2 The MultiMatrix<T,N> class . 23
5.3 The ListList<T> data type . 25
5.4 Blocked matrices . 25

6 NMR functions 26
6.1 Using spin systems . 26

6.1.1 spinhalf system . 27
6.2 Creating spin operators . 28

6.2.1 Product operators . 28
6.2.2 Tensor operators . 29

6.3 Spin state permutations . 30
6.4 NMR functions . 31
6.5 Spatial tensors . 34
6.6 Sample spinning . 37

6.6.1 Inhomogenous Hamiltonians . 37
6.6.2 Homogeneous (system) Hamiltonians . 39

1

6.7 Propagation . 40
6.7.1 Propagation under a homogeneous periodic Hamiltonian 43
6.7.2 Propagation under inhomogeneous Hamiltonians 44

6.8 Powder averaging . 45
6.9 Superoperators . 46
6.10 Sequence.h . 47

6.10.1 Creating the pulse sequence elements . 47
6.10.2 Creating the pulse sequence . 48

6.11 Data processing . 50
6.12 “Meta Propagation” . 52

6.12.1 HamiltonianStore<T> . 53

7 Optimisation and Data fitting 55
7.1 Data fitting . 55
7.2 Functional minimisation . 57

8 Miscellaneous 57
8.1 Random numbers and noise . 57
8.2 Euler angles and Wigner rotation matrix elements 58
8.3 3D geometry . 59
8.4 timer . 60
8.5 Parallel computation with MPI . 60
8.6 Parameter input . 60

9 Evolution 62
9.1 Changes from release 2 . 62
9.2 The future . 63

A The algebra 64

B Speed comparison of different operations 65

C Errors and exceptions 67

D Multi-threading 68

2

1 Introduction

libcmatrix is a C++ library of classes and functions designed for numerical studies of prob-
lems in NMR. Its major current application is as the back-end of a SIMPSON-like general
simulation program, provisionally titled NMRsim. Most the functionality of the library can
be accessed in a user-friendly fashion via NMRsim and so most users will have little call for
dealing with the underlying library directly. As a consequence, this library documentation
has trimmed of its more tutorial aspects and the description of the higher-level functionality
is left rather vague since this functionality is both most subject to change and of less general
application. Differences from release 2 are noted in the margins and Section 9.1 contains
information on significant changes which may affect the compilation of existing programs.

The libcmatrix source directory is divided into the following subdirectories:

coredefs Definitions and data types, such as cmatrix that are basic to libcmatrix.

NMR Functions and datatypes that are particular to NMR simulations.

utils Useful functions and data types that do not fit neatly into a particular module e.g.
Fourier transforms, input/output etc.

optim Code for non-linear model-fitting and optimisation.

local Local and/or temporary additions/modifications. This directory will be generally be
absent in public releases.

test Test programs/example programs. These can be compiled using make program.

contrib Fragments that are nominally compatible with the library but have either been
removed or not incorporated.

docs Documentation.

1.1 Using libcmatrix

The cmatrix source directory contains a template Makefile, Makefile template. The impor-
tant Makefile variables are

FLAGS Two sets of values of values, one for when when debugging, and the other for when
the program is working properly which turns on optimisation and disables certain error
checking (discussed in more detail in Section 4.3).

LIBCMATRIX is the path to the source directory. This is required for both the header files and
compiled libraries.

LIBRARIES is the list of libraries that linked with compiled program. This must, of course,
include libcmatrix itself!

3

libcmatrix programs are generally straightforward to debug. The great majority of prob-
lems are caught as part of argument checking and result in “exceptions” being thrown. Unless
a program sets up its own exception handling this causes the program to core dump. Running
the program in a debugger may show where the error occurred, although with some systems,
notably g++/gdb, it is not possible to examine the state of the program after an exception
i.e. the debugger must be used to trap execution before the error occurs.

If the program crashes “badly” (mysterious segmentation faults etc.), make sure that
it has been compiled without -NDEBUG which has the effect of disabling range checking etc.
Deleting the -NDEBUG should cause the recompiled program to fail with a well-defined BadIndex
exception. Depending on the run-time system, exceptions may cause programs to terminate
with an unhelpful core dump. In this case, it makes sense to trap libcmatrix exceptions and
print the error message e.g.

try {
code. . .
} catch (MatrixException& exc) { catch exceptions from libcmatrix

std::cerr << exc << std::endl; print error message
}
execution continues here

Alternatively, the individual exceptions derive from the standard exception classes, cf.
Table 12.

Unless you are writing your own “dangerous” code e.g. using pointers, unchecked array
accesses etc., nasty segmentation-violation type crashes are very unlikely.

1.2 Combining cmatrix with other code

C++ and C are link-compatible, that is to say, C routines can be linked directly with C++.
Linking C (and hence C++) with FORTRAN is significantly more painful. The details (in-
cluding compilation options) vary with system and compiler, but simple numerical types,
1D-arrays etc. can generally be passed without too much difficulty. The data in cmatrix

and rmatrix types is stored as a simple array which can be passed to FORTRAN (or C)
routines, although such routines cannot manipulate or create the full cmatrix data structure.
Since complex numbers are stored as double precision numbers, the cmatrix arrays can be
manipulated with “z” functions of LAPACK, and rmatrix arrays with the “d” functions. It
important to remember that the matrices will appear to FORTRAN as their transposes, since
FORTRAN uses column rather than C’s row ordering. Fortunately, these problems are be-
coming less relevant as more code is re-implemented in C/C++ e.g. the MINUIT optimisation
library.

libcmatrix can be configured at compile time to use an external optimised library (e.g.
ATLAS) for key routines such as matrix multiplication. Optimised versions perform much bet-
ter and will, for larger matrices at least, outperform the native libcmatrix routines. ATLAS
provides a “self-tuned” version of core linear algebra routines for arbitrary architectures and
delivers much better performance for large problems (>∼ 16×16) over the native libcmatrix
routines.

4

2 General features

2.1 Standard functions and arguments

Functions that manipulate objects of a certain type can be divided into two categories: “in-
place” functions that modify one of the input arguments, and functions that create a new
data object to hold the result. For example, the increment operator, A+=B, stores the result
of adding A and B back in A and so is an “in-place” operation. Such operations are often very
efficient, but certain operations, such as matrix multiplication, cannot be performed in-place
and so a third (output) matrix is required.

Care is taken to ensure that the nature of functions is unambiguous. In-place functions,
such as += are naturally coded as member functions, hence A.conj() is the function that
turns A into its complex conjugate. Such members fcuntions generally return void which
prevents ambiguous code such as B=A.conj() (is A first turned into its complex conjugate and
copied into B or is B simply set to the conjugate of A?)1. However, it is not appropriate to use
member functions for every in-place operation. For instance, a Fast Fourier Transform is not
really an elementary operation of the cmatrix data type, and including every possible in-place
operation would clutter the cmatrix type with many functions from high-level modules. In
these cases, a global function is used with suffix ip. Hence fft ip(A) would replace A by its
FFT.

Other functions return a result in a new object. This can either be passed as an additional
argument to the function, or the function can return a new data object which is created
as a temporary variable. The latter method has the advantage of simplicity of appearance;
complex expressions can be written such as A=B*C+D and the compiler will create the necessary
temporary objects to store the result of B*C and the addition operation. This is the way that
languages such as Matlab operate, and operators like *, + etc. always return new temporary
objects. The drawback of this approach is that the creation, followed by the destruction, of
the temporary variable can involve significant overhead e.g. for small matrices. Note that
compilers do not necessarily warn that results are being ignored, so fft(a) may compile
without warnings even though the result of fft is being ignored!

A more efficient, if less visually elegant, solution is to use functions such as multiply(C,A,B)
that put the result of multiplying A and B in C. The previous contents of C (if any) are overwrit-
ten. If this code is part of a loop, C will probably already be an output variable of the correct
dimensions, thus eliminating the need for any re-allocation of memory. Like in-place functions,
such “supplied-destination” functions are declared void. In many circumstances, the input
matrices A or B cannot also be used as output matrices, in which case an ArgumentClash

exception is thrown.
The standard order for arguments is2

function(output argument (if any), input arguments, any optional arguments);

Functions that return information, such as size, about an object fall into a slightly different
category. In normal C++ usage, such functions would normally be member functions e.g.

1However, functions such as += (e.g. A+=B) are conventionally defined not void and return the result after

the operation
2The opposite convention is used in the standard library. . .

5

Operation in-place new-object supplied-destination Matlab equivalent
Addition A+=B A+B add(C,A,B) A+B

Subtraction A-=B A-B subtract(C,A,B) A-B

Negation A.minus() -A minus(C,A) -A

(Matrix) multiplication A*=B A*B multiply(C,A,B) A*B

Division A/=B A/B divide(C,A,B) A/B

(Element) multiplication A.emultiply(B) emultiply(A,B) emultiply(C,A,B) A.*B

Similarity transformation A.simtrans(B) – simtrans(C,A,B) inv(B)*A*B

Inverse sim. transf. A.isimtrans(B) – isimtrans(C,A,B) B*A*inv(B)

Conjugation A.conj() conj(A) conj(C,A) conj(A)

Transposition A.transpose() transpose(A) transpose(B,A) A.’

Multiply and add mla(C,A,B) – – C=C+A*B

Real part – real(A) – real(A)

Imaginary part – imag(A) – imag(A)

Table 1: Names used for standard operations. “In-place” functions modify the input matrix
A. “New-object” functions return a new object (e.g. a new cmatrix) containing the result of
the operation. “Supplied-destination” functions put the result into the object supplied as the
first argument (C).

A.sum() might be used to return the length of a vector. This avoids cluttering the global
namespace with functions that are only relevant to a particular data type. In mathematical
usage, however, the notation sum(A) is more readable and since the same function might be
applied to several different data types, it makes sense to define these as global functions. Low-
level functions are always member functions (if they are visible at all). Functions that start
isXXXX invariably return boolean true, false information e.g. issquare.

A standard set of names are used for common operations that are shared between objects.
These are listed in Table 1 in the various different ways that they can called. Some of these
combinations are never defined e.g. there is no “new-object” similarity transform function.
This is because it is rare for similarity transformation to be part of a more complex expression
e.g. C=simtrans(A,B)+D and this form is unsuitable in critical loops since it involves the
creation of an additional temporary. The “multiply and accumulate” operation, mla, is a
little unusual, but the expression C=C+A*B is often encountered, and so it is useful to define
this function for some key data types. Data types are not obliged to define all these functions,
e.g. transposition for scalar types.

Where common combinations of operations can be written more efficiently as a single
operation, the function names are combined with an underscore, so f g(A) is equivalent to
f(g(A)). For example, the conjugate transpose operation can be written conj(transpose(A))

but the equivalent function conj transpose(A) may also be defined.
Some functions have special forms for specific inputs e.g. if the matrices involved are uni-

tary, hermitian etc. These special forms are written hermitian X etc., e.g. unitary simtrans

should be used when the transformation matrix is unitary. Note that you are responsible
for ensuring that the matrices are of the declared type e.g. the function ishermitian(A,tol)

6

returns true if the difference between ai,j and ∗
ji

exceeds the specified tolerance (which can be
zero to check for exact hermiticity).

2.2 “undefined” and non-dynamic objects

Some objects have an “undefined” state, created by a empty constructor, that can subsequently
be “filled in”. This is the case for example, for the matrix data types. and so functions check
that their inputs are defined using empty() (container types e.g. Matrix) or the ! operator
for “objects”. Passing an undefined matrix as an output argument is perfectly acceptable.

Some other data types need to be fully constructed when the object is initialised. For
instance, the spin system type has no null constructor, and the number of spins must be
specified when the object is created. This number cannot be changed subsequently. Although
simple C-style arrays can be created from objects without a null constructor, the libcmatrix
(and most of the STL) storage classes can be used on such objects e.g. List<spin system>

Modified
list(5,spin system(2,"1H")) creates a list of 5 identical spin system objects.

In most cases, the data storage for a container object is allocated “dynamically”. In some
circumstances, however, the memory may have be allocated by another object. The “flat”
memory allocation of a r× s× t three-dimensional matrix, for example, means that, in effect,
the first s×t data items correspond to the first 2D matrix “slice” in the 3D matrix, the next to
the second and so on. These 2D slices can be returned efficiently as “views”, if we can create a
matrix object that refers to this independently-allocated memory. The libcmatrix container
objects(List, Matrix and MultiMatrix) can be flagged as “non-dynamic” when created, in

New!
which case the data space is expected to be managed externally.

There is distinction between initialising a matrix from a non-dynamic matrix and assign-
ment. If A is a non-dynamic cmatrix, for example, the result of cmatrix B(A) (or cmatrix

B=A;) will be a new non-dynamic matrix pointing to the same data space as A. The initiali-
sation will be very quick, but it is important to realise that A and B are referring to the same
data! On the other hand, cmatrix B; B=A; will first create a normal matrix and then copy
the contents of A into B. B and A are completely independent.

Like the view objects described below, attempts to pass temporary non-dynamic objects
as variable arguments to functions will often generate compilation warnings and the compiler
may refuse such code entirely. The solution is to create a non-temporary non-dynamic ob-
ject from the temporary i.e. cmatrix B(my function); using function(B,...) rather than
using function(my function,...).

The memory allocation for a non-dynamic object must be supplied when the object is
created and is then fixed. Attempts to change the size of the object or to explicitly release
the memory (i.e. clear) generate exceptions.

Non-dynamic objects should only be used when necessary as they can easily lead to “alias-
ing” problems where apparently distinct objects actually refer to the same data. Use references
whenever possible.

7

Operation in-place new-object
addition, + X X
subtraction, - X X
negation X (minus) X (-)
multiplication, * X X
division, / X X
conj X X
mla X –
real – X
imag – X

Table 2: Standard operations defined for complex data type indicated by X. Note that R
indicates the option of a form taking a real argument.

3 The complex data type

The complex data type is defined in the header file cmatrix complex.h. Note that this is dif-
ferent from and independent of other complex implementations, including the templated com-
plex type provided in ANSI C++; including the ANSI complex header is not recommended!
The complex data type has three constructors: complex(double r,double i) which creates a
complex number from its real and imaginary components, complex(double r) which creates
a complex number with a zero imaginary component, and the null constructor complex()

which creates an “undefined” complex number, where the memory is allocated for the real
and imaginary components, but their contents are undefined3.

The standard operations defined in cmatrix complex.h are shown in Table 2. Most func-
tions have additional forms that handle real arguments efficiently e.g. complex(2,1)*2.0 is
compiled with a function that multiplies a real by a complex. If such real forms do not exist,
double will be automatically promoted to complex and the “full complex” form used. Table 3
lists the additional operations that are specific to the complex type. The expi(a) function,
which calculates exp(ia) where a is real, i.e. (cos a, sin a), is a little unusual, but is much more
efficient than exp(complex(0,a)).

4 The Matrix<T> class

The Matrix<T> class is a general matrix type about which most of the rest of the library
is built. The rmatrix and cmatrix types, used for real and complex matrices, are in fact
Matrix<float t> and Matrix<complex> respectively. This section describes operations of
the cmatrix type, but the same operations are (mostly) applicable to the general type.

Note that “mixed arithmetic” is supported e.g. multiplying an int-based object with a
double-based object. Provided the data types are “known”, the compiler can deduce the cor-
rect output type for a given input combination, for instance, Matrix<int> * Matrix<double>

Modified
will create a Matrix<double>.

3The empty constructor in some other definitions of the complex data type sets the components to zero.

8

C complex(), complex(R), complex(C)
R norm(C)
R arg(C)

C polar(R,R)
R abs(C)

C [sin,cos,tan](C)
C [sinh, cosh, tanh](C)

C exp(C)
C expi(R)

C pow(R,C), pow(C,R), pow(C,C)
C sqrt(C)

Table 3: Additional complex functions. R denotes a real argument/result, C a complex one.

There is partial support for types that lack null constructors. For instance Matrix<spin system>

a(3,2) is impossible since spin system has no default constructor. By using functional forms
which take a constructed object e.g. Matrix<spin system> a(3,2,spin system(2,"1H")) it
is possible to create a Matrix (or List) of such objects. Many matrix functions assume the
presence of a default constructor and so will not work for such objects, but these functions
are rare applicable to such objects.

4.1 Complex matrices

The most important data type is the complex matrix, cmatrix, which is shorthand for
Matrix<complex>. Most functions are provided by the generic Matrix<T> functions, but op-
erations that are particular to complex matrices e.g. conjugation, are declared in the header
file cmatrix.h.

The descriptions of functions do not necessarily show the full prototype definition for a
function, hence for issquare(cmatrix A), the details of how A is passed to issquare are
omitted. In fact, the full definition of issquare is issquare(const cmatrix&) i.e. the matrix
is passed as a (constant) reference, which is the most efficient way of passing the matrix. By
contrast the presence of the reference, &, in read matrix(&matrix,char* fname) indicates
that matrix is altered by the function (it is overwritten by the contents of fname).

4.2 Creation and deletion of cmatrix

The simple constructors are:

cmatrix() creates an undefined complex matrix.

cmatrix(int rows,int cols) constructs an uninitialised rows by cols matrix. Both rows and
cols must be greater than zero.

cmatrix(int rows,int cols,complex value) constructs a rows by cols matrix, initialised to
a constant value.

9

cmatrix(int rows,int cols,complex* addr) creates a matrix from a list of elements. The
elements are copied from the vector with the column assumed to vary most rapidly, i.e.
standard C order. This is the only way to initialise a matrix with specific values in
source code. It is also useful for constructing a cmatrix from a C/FORTRAN supplied
data array (the FORTRAN matrix will be transposed).

cmatrix(cmatrix) is the simple copy operation4.

cmatrix(Matrix<T>) creates a complex matrix from a matrix of another type e.g. Matrix<double>.

In addition to the constructors, there are a couple of create member functions which
can be used to (re)create an existing matrix: create(int rows,int cols) and create(int

rows,int cols,complex* addr). So A.create(5,5) would turn A into a 5×5 matrix initialised
to zero; its contents are undefined, however. A must, of course, have previously been declared,
but need not have been initialised. Obviously, if A is already a 5 × 5 matrix, the existing
allocated memory will be re-used. If A is a different size, the memory will be released, and a
new matrix allocated.

In common with other “container” objects, matrices have a swap member function: A.swap(B)
swaps the contents of objects A and B. This operation is quick since only pointers to the data
and not the data itself are swapped. The memory allocated to containers can be released using
the clear() member function, which returns the cmatrix to the undefined state5. Matrices
(if defined) can be set to a constant value using the = operator e.g. A=complex(5,4) sets the
elements of A to 5 + 4i.

4.3 Information functions

The following member functions return information about a cmatrix object:

size t rows() and cols() returns the number of rows or columns of a matrix. These can
be assumed to be zero for an undefined matrix.

size t size() returns the total number of data elements i.e. rows()*cols()6.
Modified

T* vector() returns the address of the data considered as a vector. This should not be
abused!

T* vector(size t r) returns the address of row r of the data. Again, to be used with care!
New!

bool empty(matrix) returns true if matrix is undefined, that is, no memory is allocated for
elements.

bool issquare(matrix) returns true if the matrix is square.
4The new matrix is completely independent of the source matrix. Some matrix implementations use virtual

copies so that the source and destination are actually the same matrix. Use references for this in libcmatrix.
5This function has been re-named from kill for consistency with the STL.
6Renamed from length for consistency with the STL.

10

Matrix elements and submatrices are accessed using the () operator e.g. A(3,5) returns
the element in the third row and fifth column of A 7. The NDEBUG symbol determines whether
bounds checking is applied. In normal compilation, NDEBUG is not defined and bounds checking
is enabled. If A was a 3×3 matrix, the above array access would generate a BadIndex exception
when the statement was encountered. Obviously such range checking is extremely useful for
debugging but considerably slows execution. Compiling the (tested!) program with -DNDEBUG,
suppresses bounds checking and element access is inlined to direct array access.

Selection of submatrices can be done in a couple of ways. They can either be specified in
terms of the slice or range objects which defines a regularly spaced sets of indices, or using a
List<size t> to list the indices required.8 The standard type size t is used for row/column
indices. Usually it is not necessary to worry about the type used for indices since the integer
types are automatically interconverted. It is more important, however, when using list objects,
since a list of unsigned will not be converted automatically to a list of int etc. In both cases,
combination of a matrix and a selection creates an object which provides a “view” onto the
original matrix. This can then be used to create a new matrix object (i.e. a submatrix of the
original), or to manipulate the specificed rows/columns of the original matrix. Although the
functionality of slice can be duplicated with a List<size t>, the slice is somewhat more
efficient.

range is a specialisation of slice which fixes the stride at 1. This is useful for selecting
ranges which are (by definition) contiguous e.g. complete rows or columns of matrices.

slice(start,size,stride =1) where start is the starting index (from 0), size is the number of
elements in the slice and stride is the step from one element to the other9. For instance
stride(1,3,2) will select indices 1, 3, 5.

range(start,end) selects the index values start to end (inclusive). When used with matrices,
an empty range object refers to the entire row/column e.g. A(range(0,1),range())
would correspond to the Matlab A([1:2],:).

slice and range objects may be multiplied (scaled) by a positive number i.e. range(0,3)*4
would make a new slice object for the indices 0, 4, 8, 12. slice objects (but not range)
support in-place scaling. Positive offsets can be added to both objects. They can also be used
as function objects taking an input size t and returning the corresponding size t index, so
range(0,3)(2) would return the 3rd element (indexing from 0!) of the selection i.e. 2.

7Previous releases, following Matlab usage, permitted matrices to be addressed directly as one-dimensional

vectors i.e. A(3) would return the fourth element in the data storage for A. This functionality is provided more

cleanly by row() or the begin(), end() iterators, and conflicts with the MultiMatrix usage where A(3) would

refer to the fourth row of A.
8Note that A(i,j) will only reduce to a direct element access if i and j are supplied as size t i.e. unsigned

integers. Integers are by default signed, so A(1,2) when compiled without optimisation will result in a few

layers of functions, which is confusing when debugging! This can be avoided using A(1U,2U) which indicates the

numbers are unsigned, or by defining the pre-processor symbol LCM SUPPRESS VIEWS which disables all ‘exotic’

uses of ().
9The slice object is analagous, but not necessarily identical, to the slice object of the Standard C++

Library. For instance, the latter may not permit negative strides. They are defined in different namespaces so

there is no direct clash.

11

A slice or a List<size t> is used together with (rowsel, colsel) to define a row and/or
column selection. If both rowsel and colsel are “list” objects of some form (e.g. slice,
BaseList<size t>, the result is an IndirectMatrix<T,rowsel,colsel> object, although it is
not usually necessary to know the exact type being returned as “view” objects are generally
used immediately, e.g. A(2,range())=2. The selection objects can be any type that has the
same “form” as a BaseList<size t>.

A(rowsel,colsel) defines a general submatrix, returned as an IndirectMatrix.

A(rowsel,col) create a one-dimensional view for a column (as an IndirectList).

A(row,colsel) creates a one-dimensional view onto the specified row. Result is IndirectList.

A(row,range(colsel)) is a special case which returns a simple BaseList since the selection
refers to a contiguous list of elements. A(row,range()) is equivalent to A.row(row).

A.diag(n =0) returns a view onto the nth diagonal e.g. A.diag()=0 would set the diagonal
elements to zero. Positive n refers to upper right diagonals, negative n to diagonals in
the lower triangle.

It is important to realise IndirectMatrix objects refer to the original matrix (which must
remain in scope over the lifetime of the object!). Operations applied to them will the selected
elements of the source matrix. Valid operations are

= b replaces each elements of the defined submatrix by the value b.

= B replaces the submatrix with corresponding elements of a general matrix B

+= b adds b to each element of the submatrix. Also -=, *=.

+= B adds the corresponding element of B to the submatrix. Also -=.

B = creates a new matrix B from the submatrix. B is independent of the original matrix
and so subsequent operations on B will not affect the original matrix. Note that B may
be another “view” object, but operations that involve the same matrix as source and
destination are illegal.

Iterators are also defined for these objects, which allows additional functions to be defined cf.
Section 4.4.

One-dimensional views using IndirectList<T,sel> work in the same way but are more
efficient and operate with List<T> rather than Matrix<T> objects.

Using a “view” object as an output argument to other functions is problematic. If the
function is expecting, say, a cmatrix, a temporary cmatrix will be created (from the view
object) in which the results are placed before it is destroyed! Some compilers refuse to
compile such code entirely. For instance eigensystem(A(range(0,3),D,B)) will pass the
upper-right 4 × 4 diagonal block of A to eigensystem as a new matrix, which is overwrit-
ten by the eigenvalues of B. To put the eigenvalues of B in a submatrix of A, you need a
temporary matrix e.g. eigensystem(tmp,D,B); A(range(0,3))=tmp. On the other hand

12

Operation in-place new-object supplied-destination
add TX TX† X
subtract TX† TX X
minus – X† X
multiply TX† RCX† X
emultiply X X† X
divide T T –
conj X X† X
mla RC – –
simtrans X‡ – X†

isimtrans X‡ – X†

inv – X‡ X†

transpose X X† X
real, imag – X† X

Table 4: Standard operations defined for the cmatrix data type. Most functions accept only
complex scalars, T , an exception being multiplication. Functions marked with † require the
creation of a temporary variable.

eigensystem(A,D,B(range(0,3))) will have the effect of diagonalising a 4 × 4 block of B
since the fact the creation of a temporary input matrix is harmless. Some (templated) func-
tions may take “generic” matrices, in which case temporaries are not passed, and a view object
will work as expected for input or output arguments

4.4 Relation to STL containers

The Standard Template Library (now part of the standard C++ library accompanying compil-
ers) is largely based around a collection of “container” classes and functions that manipulate
them. These classes are mostly aimed at “computing” applications, but the valarray and
vector types are quite similar to List10. The libcmatrix types share many of the char-
acteristics of the STL types and the types can often be used interchangeably. In contrast
to libcmatrix, the STL types are always single-dimensional and so a complete one-to-one
correspondance is not possible, particularly in respect of object creation and resizing.

On the other hand, all libcmatrix containers provide “iterators” (via begin() and end())
and so can be used in standard algorithms (see test/testiter.cc for some examples). Hence
the STL algorithms can now be relied on for standard operations such as sorting. As most
objects (with the single exception of List) cannot be dynamically resized, however, it is not
possible to create “insert iterators” (e.g. front inserter) from libcmatrix types.

4.5 Mathematical operations

The standard operations defined for cmatrix are shown in Table 4. Some functions need a
little more in the way of comment:

10The STL list container involves linked lists and so does not resemble the libcmatrix List.

13

• The mathematical functions accept scalar arguments when this is appropriate, for in-
stance A+2.0, or add(B,A,2.0), adds 2 + 0i to each element of A.

• The +=, -= and mla operators are unusual in accepting an undefined matrix as valid
input. The undefined matrix is treated as a zero matrix i.e. A+=B becomes A=B if A is
undefined. In the same spirit, *= treats an undefined matrix as an identity matrix i.e.
A*=B becomes A=B if A is initially undefined. An Undefined exception is thrown if B is
undefined, or if either input matrix is undefined for the + and add operators.

• Division is only defined for scaling e.g. A/2. Matlab has special uses for divisions involving
matrices.

• A*=B is defined as A = A∗B. Since matrix multiplication is non-commutative in general
it the otherwise unused operator &= is used (à la GAMMA) for A = B ∗A. Note that in
both cases a temporary is required to hold the result of the multiplication.

• The following “composite” functions are also defined: conj transpose, transpose multiply(A,B,C)

performs A = BT C, multiply transpose(A,B,C) performs A = BCT , conj transpose multiply(A,B,C)

performs A = B†C, multiply conj transpose(A,B,C) performs A = BC†.

• real and imag return real (rmatrix) rather than complex matrices.

4.6 General operations

Some of the following functions have special forms for particular types of input matrices.
Functions beginning hermitian and unitary , for example, are optimised for Hermitian and
unitary matrices respectively. These are always quicker than their non-specialised counterparts
and may return different result types e.g. the eigenvalues of a unitary matrix are real rather
than complex. It is important to note, however, that the results will be meaningless if the
matrix is not of the declared type. In some situations it is clear what type a matrix will be (e.g.
Hamiltonians must be Hermitian). In others, more care is needed e.g. if using non-Hermitian
detection operators when the propagation code uses the hermitian trace function.

complex trace(A) returns the trace of A, i.e. the sum of its diagonal elements,

complex trace multiply(A,B) returns the trace of AB11. This is very much quicker than
Modified

evaluating trace(A*B) since it avoids the calculation of the unneeded off-diagonal ele-
ments of the matrix product. Note that to ‘detect’ operator Q, the appropriate detection
operator is Q†. Hence for non-Hermitian operators, tr(AB) is not the projection of A

on B, tr(AB†).

complex trace multiply(List<complex> A,cmatrix B) returns the trace of AB where A

is a diagonal operator stored as a complex vector.

double hermitian trace multiply(A, B) returns the trace of AB assuming that A and
B are Hermitian. This function is useful if the observable is real since the calculation

11Function renamed from simply trace late in R3.

14

is almost twice as quick as trace and is often a rate limiting step in some propagation
techniques. ∑

i

AiiBii + 2
∑

i,j>i

Re(AijBji) (1)

double hermitian trace multiply(List<double> A, cmatrix B) returns the trace of AB

where A is the diagonal of a Hermitian detection operator.

double normsq(A) returns the square of the norm of matrix A, i.e. |A|2. normsq is used to
avoid the unfortunate confusion over the meaning of norm.

complex sum(A) returns the sum of all the elements of matrix A. Note that the Matlab sum

function performs the sum over a single dimension of a matrix i.e. it returns a projection.

double hermitian sum(A) returns the sum assuming that the matrix is Hermitian. The
result is undefined is the matrix if not actually Hermitian.

∑

i

Aii + 2
∑

i,j>i

Re(Aij) (2)

A.identity(int n) initialises the matrix to an n× n identity matrix. Note that the global
function identity(n) (declared in rmatrix.h) returns a real identity matrix, which can
then (if necessary) converted into a complex matrix. Hence, cmatrix A=identity(5)

is significantly slower than the corresponding definition in terms of member functions
cmatrix A; A.identity(5).

4.7 Advanced mathematical operations

The following functions involve more advanced matrix algebra. Many of these functions are
only defined for complex matrices. The most efficient functional form is shown, with the
presence of other functional forms indicated with: IP (in-place), N (new-object), SD (supplied-
destination).

The similarity transforms functions are:

simtrans(&B,A,V)† returns V AV −1 in B. Other forms: IP.

unitary simtrans(&B,cmatrix A,V , cmatrix* =NULL)† assumes that V is unitary. This
is much more efficient than the general form above, since the inverse of V is given simply
by its conjugate transpose. Other forms: IP. An optional pointer to a “workspace”
matrix can be passed to the SD form which avoids the need for a temporary matrix to
be created.

unitary simtrans(&B,List<T> A,V , cmatrix* =NULL) applies the similarity transform
to a diagonal matrix stored as a real or complex vector (i.e. T can be double or complex).

These functions are all defined for the inverse similarity transform operation, isimtrans,
V −1AV .

15

The matrix inversion function, inv, is slightly unusual since the supplied-destination form,
int inv(B,A), returns an error value rather than being a void function. This error value is
non-zero if the input matrix is singular. The new-object form, B=inv(A), cannot return an
error code and throws a Failed exception if A is singular. The choice of which form to use
depends on whether singularity of the input matrix is really “exceptional”.

The syntax of the diagonalisation functions is also unusual since it is necessary to return
more than one result i.e. the eigenvalues and eigenvectors.

eigensystem(cmatrix &evectors,List<complex> &evals,A)† calculates the eigenvalues and
eigenvectors of the complex matrix A. This function should be used with care for general
matrices (those which are not hermitian, orthogonal or unitary), since the eigenvectors
are not well-defined for general matrices. In particular, the eigenvector matrix may not
be unitary12.

hermitian eigensystem(cmatrix &vectors,List<double> &evals,A)† should be used for Her-
mitian input matrices. The eigenvalues are necessarily real. The diagonalisation of 2×2
Hermitian matrices is coded explicitly for speed.

cmatrix eigs; matrix to store vectors
List <double> evals; list to store eigenvalues
hermitian eigensystem(eigs,evals,H);
cout << "Eigenvalues: " << evals << endl; output eigenvalues

N.B. Diagonalisation is not obliged to respect block structure! If a matrix has degen-
erate eigenvalues (always true if the Hamiltonian has some symmetry), then the eigenvectors
are non-unique. The diagonalisation routine is free to mix the eigenvectors and in doing so
may disrupt any block structure. If you have block structure, you should diagonalise the blocks
individually. A closely related problem occurs if a matrix should be block diagonal but isn’t
quite due to numerical round-off. The results in inapopriate mixing of states, particularly if
they are almost degenerate. In the worst case, the diagonalisation can be unstable, resulting
in eigenvector matrices that are no longer unitary.
Functions which proceed via diagonalisation

cmatrix pow(A,x)‡ returns Ax in B for a general matrix. The hermitian pow function
should be used if A is hermitian. x may be complex, real or integer. Other forms: N.

cmatrix exp(A,double z =1)‡ returns the (optionally scaled) matrix exponential exp(zA).
This function will work for any non-singular A but is much less efficient than the
hermitian exp function which should be used for Hermitian matrices. The last ar-
gument is optional i.e. exp(A) will return the (unscaled) matrix exponential. N.B. the
equivalent Matlab function is expm, not exp.

The hermitian variants only also exist in supplied-destination form.
12An eigensystem controller structure is defined in cmatrix.h which can be used to control warnings and

checks on complex diagonalisation.

16

4.8 Input/output

All libcmatrix classes have an output stream definition i.e. cout << A will output something
comprehensible for any given A. The formatting of the numbers is determined by the current
stream output flags (see the iostream documentation for details), except for matrix output
where it is necessary to force fixed width output for readable results. It is a good idea
to reduce the number of output decimal places for matrices from the default six using e.g.
cout.precision(3).

Output to files involves a choice of file format. The functions supplied with the cmatrix

library can store matrices (and vectors) as simple streams of binary numbers or as ASCII.
Binary formats are quick to read and write, but are not very portable. Matrices can also be
stored in “RMAT” format which resembles the simple format used in PGM etc. files. This
is a home-grown format so very few programs will read these files! Use Matlab or SIMPSON

formats for better portability.
The following functions output real or complex matrices or vectors to files:

void write vector(FILE* filep,List<complex> data,int flags =mxflag::doublep) writes
a vector of complex numbers to an open file pointer. The flags and return values are
described below. The default flag settings give files consisting of a list of ASCII numbers
to double precision.

int write vector(const char* fname,List<complex> data,int flags =mxflag::doublep)

opens the file fname and writes a vector of complex numbers to it.

void write matrix(FILE* filep,matrix,const char* comment =NULL,int flags) writes a
matrix to an open file pointer. The optional comment string is a set of text lines
(separated by newlines) which can be used to describe the output. The default setting
of flags is doublep | binary.

int write matrix(const char* fname,matrix,char* comment =NULL,int flags) writes the
matrix to the specified filename. The default setting of flags is doublep | binary, i.e.
RMAT file containing double precision binary.

void read matrix(&matrix,FILE* filep) creates matrix from a given file pointer, which should
point to the start of a valid matrix file format. The raw list of numbers produced by
simple cannot be read as a matrix, neither can complex matrices stored in block form.
Trying to read a complex matrix into an rmatrix is an error. The contents of the matrix
after a failed read are undefined.

int read matrix(&A, const char* fname) creates matrix A from a given filename.

The functions taking a FILE* throw a Failed exception in an error occurs e.g. the data
file could not be parsed. The functions taking a filename, however, return an error code which
is non-zero if the file open/read/write failed, zero if successful. The return value should be
checked to ensure that the operatin was successful (see Appendix C). The possible flags are

17

mxflag::binary create binary output rather than ASCII numbers. This is much quicker to
read and write and is more compact, but the resulting file is not very portable since the
way binary floating numbers are stored can vary from machine to machine.

mxflag::doublep use double precision numbers. Storing as single precision numbers is more
compact but loses accuracy.

mxflag::simple forces (ASCII) output to be a simple list of numbers (real/complex alter-
nating pairs for complex numbers), without any header describing the size of the matrix.

mxflag::block forces (ASCII) matrices to be formatted one data row per line. The resulting
output can be easily recognised as a matrix, and some programs can use the formatting
to determine the matrix dimensions e.g. Matlab. The block option is not suitable,
however, for large matrices, since the resulting long data lines can cause input buffers
to overflow.

mxflag::norowsep suppress the insertion of newlines used to delimit rows in ASCII output.
Combined with simple, this generates the simplest possible output, but is rarely needed
since most input routines happily ignore the extra white space.

Flags are combined using | i.e. the default setting of mxflag::doublep | mxflag::binary

means that data will be written in double precision binary. Note that the formatting flags,
simple, block and norowsep only apply to ASCII output.

The following functions used to read and write Matlab files are declared in "matlabio.h",
which must be included if Matlab files are needed. Note that Matlab can also read and
write simple ASCII files; these can be created by write matrix using the mxflag::block |

mxflag::simple options. Matlab files always have a “.mat” extension and the WriteMATLAB

functions always add it to the supplied filename. Matlab files can contain more than one
matrix, and each matrix must be named. If writing a single matrix to a file, it generally
makes sense to use the same name for both the matrix and the file. This name is used when
the matrix is loaded into Matlab, and so must be a valid Matlab variable name; using a name
such as “my.matrix” will cause an error when the file is loaded into Matlab since the “.” will
be interpreted as dot product.

The objects that can be written to and read from Matlab files are real or complex List,
Matrix or MultiMatrix objects. When reading, the dimensionality of the destination object
must match the dimensionality of the data in the file otherwise a Failed exception is thrown.
Real data files can be read into complex objects but not vice versa.

WriteMATLAB(FILE* filep,X object,const char* name,version =0) writes a Matlab file to
the given data stream. Multiple objects can be stored in the same file by sequential
calls to WriteMATLAB; clearly nothing should be written to the stream between calls.
The format used by the data object is determined by the optional version indicator
which can be 4, 5 or 0. If zero, the “default” format is used, which is V4 except for
multidimensional matrices which can only be stored in version 5 files. It obviously does
not make sense to mix V4 and V5 formats in the same file! An exception is thrown if
the write fails.

18

int WriteMATLAB(const char* fname,X object,const char* =NULL), version =0 writes a
(single) matrix to a file. If the name of the matrix is not supplied, it is taken from the
filename. An error code is return if the write was unsuccessful e.g. the file could not be
opened.

int ReadMATLAB(X& obj,FILE* filep) read a object from an open Matlab file. The Matlab
matrix name is not retrieved. An error code is returned if the read was unsuccessful e.g.
the data file was corrupt, or the end of file had been reached.

int ReadMATLAB(X& obj,const char* fname) initialises matrix from a Matlab file. An er-
ror code is returned if the read or file open was unsuccessful.

The Matlab I/O routines do not use the Matlab library functions, which is useful for
portability but does mean that they may not cope with all possible formats, especially of
the V5 format files. The (undocumented) matlab controller object can be used for more
sophisticated control of Matlab I/O e.g. looking ahead to identify the nature of the next object
in the file.

The header file simpsonio.hdeclares some functions for reading and writing files in SIMPSON

format (ASCII format only):

int read simpson(cmatrix& dest, char* fname) reads a SIMPSON file into a complex ma-
trix (created as a row vector if the data is one-dimensional). A non-zero error code is
returned if the read was unsuccessful.

int read simpson(cmatrix& dest, simpsonFD& info, char* fname) reads the file into dest
and stores the information for the header in the supplied SIMPSON “file descriptor” ob-
ject (see the header for details of what this contains).

int read simpson(List<complex>& dest,simpsonFD& info, char* fname reads the file into
a flat complex vector.

write simpson(char* fname,List<complex> data,sw,isspectrum) writes a complex vector
to a SIMPSON file. The spectral width must be supplied. The isspectrum flag (default
true) flags the data is a spectrum rather than an FID. An exception is thrown if the
write was unsuccessful.

write simpson(char* fname,cmatrix data,sw,sw1,isspectrum) writes a two-dimensional
matrix to a SIMPSON file. sw and sw1 are the spectral widths in the direct and indi-
rect dimensions respectively.

write simpson rows(char* fname,cmatrix data,sw,isspectrum) stores a 2D data set as a
series files for the individual rows which will be named fname00, fname01 etc. These
can then be displayed in simplot (which doesn’t understand 2D SIMPSON files). The
matrix cannot have more than 100 rows.

19

Operation in-place new-object supplied-destination
add TX TX X
subtract TX TX X
minus X X X
multiply TX TX X
divide TX TX X

Table 5: Standard operations defined for the List<T> template type. T denotes a scalar
operand e.g. *=2.

4.9 Real and diagonal matrices

The rmatrix class for real matrices is declared in rmatrix.h and is essentially identical
to its complex counterpart cmatrix, but with a slightly more limited number of numerical
operations. Real matrices should be used when possible since they take up half the memory
of a complex matrix and many operations, such as diagonalisation, are much more efficient:

hermitian eigensystem(rmatrix& vectors,List<double>& values,rmatrix A) returns the
eigenvalues and eigenvectors for a real symmetric matrix13.

Diagonal matrices can be handled much more efficiently than full matrices and so it is
useful to define functions that make use of them. There is no diagonal matrix type as such
(unlike GAMMA), but List<double> and List<complex> can be used for real and complex
diagonal matrices respectively.

It is important to realise that the List objects are not really diagonal matrices nor row or
column vectors. It is the function being applied that determines their “shape”. Addition of a
matrix and a List is unambiguous, for example; the List must represent a diagonal matrix.
This is not the case, however, for multiplication. Hence only supplied-destination forms of
multiplication are provided, since the output type determines the interpretation of the List.

The following functions convert between diagonal and full representations:

List<T> diag(Matrix<T> A) returns the diagonal elements of A. The SD form, diag(List<T>
d,A,n =0), puts diagonal n of A in d.

Matrix<T> full(List<T> vector) places vector along the diagonal of an otherwise zero ma-
trix. The SD form is useful for creating a complex matrix from a real vector.

20

5 Other storage types

5.1 The List<T> class

There are two forms of list object; BaseList<T> and List<T>14 (which is derived from
BaseList<T>). List<T>, like Matrix<T> (and its derived classes, rmatrix and cmatrix) is dy-
namically created i.e. memory is allocated to store its members. In contrast, the BaseList<T>
class is a convenient package for a pointer to an already-allocated list of objects (plus their
number). Creating a BaseList from a pointer does not involve copying the objects (unlike
List). When allocating space from an undefined List, exactly amount of memory required is
requested, but subsequent create operations do not necessarily release freed memory in order
to minimise expensive calls to memory allocation functions. Using BaseList, responsibility
for memory allocation is entirely with the user. They are useful when interfacing libcmatrix

functions to other objects/code, but they should not generally be used for storage. In partic-
ular, using non-dynamic objects inside objects is not recommended. Unless a suitable copy
operator is defined, for example, copying a BaseList creates an object referring to the same
place as the original—a recipe for disaster!

Because List is derived from BaseList, functions that expect a BaseList input will also
accept a List (but not vice versa); the only exception being when the size of the input list needs
to be changed cf. “supplied-destination” functions for the matrix classes. The equivalent of
new-object functions necessarily return List<T> objects. Most supplied-destination functions
have two forms; one for a BaseList destination, the other for a List. A Mismatch exception
will be thrown in the former case if the BaseList is the wrong size for the list being created.

The following constructors are provided:

(Base)List() creates an empty list object. Its size() is defined to be zero.

(Base)List(int n,T* addr) creates a list of n objects from a pointer to n objects of type T.
An important distinction is that the objects are only copied when creating a List<T>.
Also exists as a create function.

List(int n) creates a list of n objects created by the default constructor for T (which must
exist). For types such as complex this means the contents are undefined. Also exists as
a create function.

List(int n,T v) creates a list of n copies of object v.

List<T> also has a clear() function which releases any memory allocated and returns the
list to an empty state.

Note that copying one BaseList to another is only possible if the lists have the same
size. Parentheses are used to obtain list elements and the access checking is again con-
trolled by the setting of NDEBUG/BOUNDS CHECK, Section 4.3. Sublists are returned using

13This used to be symmetric eigensystem, but has been renamed so that the functions names of rmatrix

and cmatrix coincide whereever possible. Since symmetric matrices are by definition hermitian, this is still

mathematically correct!
14In fact, there is a third type, DynamicList<T> which behaves like List<T> but whose capacity cannot be

dynamically changed. It is used internally as the base storage type for matrices etc., but List<T> is more

flexible for normal use.

21

(BaseList<size t>). Note that initialising a BaseList from another List creates an object
that points to the same data, while assigning (using =) one list to another makes a new copy
of the data. This distinction is confused by code such as BaseList<T> A=B which is an ini-
tialisation and is actually equivalent to BaseList<T> A(B) i.e. A now points to the same data
as B.

Other functions:

size() returns the length of A. This is zero for an empty list.

vector() returns the pointer to the data, which is useful for passing lists to non-libcmatrix
functions, but should otherwise be used with care.

truncate(size t n) returns a new BaseList with a number of elements set to n. This is
useful for working with an over-allocated array. Obviously n must not exceed the number
of items originally allocated!

resize(n) is defined to change the length of a list while preserving contents (unlike create).
The list is truncated if n is less than the current list size.

reserve(n) ensures that the object will hold at least n objects. It behaves like resize if n

exceeds than the current memory allocation, otherwise it does nothing.

sum(list) returns the sum of the list. This requires the operations =0 and += to be defined for
the data type.

max(list) and min(list) returns the maximum and minimum values in list. These operations
obviously require the comparison operators to be defined for T and require the list to be
non-empty (otherwise the ListEmpty() exception is thrown).

== returns true if two Lists are identical. Two lists are identical if all the corresponding
elements are identical (Lists are ordered). Clearly lists that differ in length are never
identical, and the == operation must be defined for T for this function to work.

The mathematical functions defined on lists are listed in Table 5 (a). If two input list
arguments are used, they must have the same size otherwise a Mismatch exception is thrown.
Multiplication and division are both element-wise operations. this is not the same as Matlab
usage. Unlike vectors in Matlab, a List<T> has no direction, and may be treated as a row,
column vector, or even diagonal matrix depending on context. The cmatrix and rmatrix

types must be used if vectors with real shape are essential, though this is less efficient than
the corresponding List<T>.

Other operations:
Modified

sort ip(list)and sort ip(list,compare) does an in-place sort with or without a supplied
comparison function (ascending order if none supplied) using the sort function from
the Standard Library.

sort(list)and sort(list,compare) returns list as a sorted new List object.

22

The dynamic allocation of memory for List<T> can be a drawback if a function uses
temporary lists. This problem can often be avoided using the ScratchList<T,size> template
type declared in ScratchList.h. A ScratchList contains an array T[size] (size is fixed
at compile time) which is claimed from the stack like other automatic variables rather than
free store and is used if the ScratchList has less than size items. If not, the memory will be
allocated from free store. ScratchList is thus efficient for small vectors (less than size) but
will still work with larger lists for which the delays in memory allocation are less important.
The preprocessor symbol SCRATCH SIZE contains a “suitable” value for size which is set to
96 unless already defined. SCRATCH SIZE is used whenever scratch vectors are required inside
libcmatrix. From the point of view of functions, a ScratchList behaves as a BaseList<T>.

ScratchList is also useful for constructing lists at compile time from an explicit list of
elements. Selecting elements 1 and 2 of a list A requires clumsy syntax of the form

New!
size t rawinds[]=1,2;
cout << A(BaseList<size t>(2,rawinds));

Note that rawinds is not const since creating lists (or matrices) of const objects is
problematic (it is simpler to declare the container object itself as const).

This awkward two step initialisation can be replaced by A(ScratchList<size t>(1,2)).
The number of elements in such a ScratchList initialisation is limited to between 2 and

10 (inclusive). ExplicitList can be used for an arbitrary number of explicit elements, but
is limited to “simple” objects e.g. ExplicitList<2,size t>(1,2). Note that the size of the
list must be passed as a template parameter so that the constructor knows how many values
to read.

5.2 The MultiMatrix<T,N> class

MultiMatrix is a functional multi-dimensional matrix type which permits the storage of multi-
dimensional data and core mathematical operations. The dimensionality is currently restricted
to 4; this will be extended but does involve a lot of typing. . . It is used internally in some parts
of the library, but not in any visible interfaces.

As with the Matrix type, the data is stored in a “flat” memory allocation and the overheads
are relatively small, though greater than for Matrix. It is efficient, wherever possible, to
“reduce” the multi-dimensional object to a simple matrix slice or vector rather than working
with the full multidimensional object. It is important to note that the dimensionality is
fixed at compile time; a MultiMatrix cannot change its dimensionality. This means that
MultiMatrix fits naturally into the compile-time algebra15.

MultiMatrix() creates an undefined matrix (dimensions are defined to be zero).

MultiMatrix(A) creates a new matrix from an object of matching dimensionality, copying the
structure and contents from A. A special case is made for initialising a MultiMatrix<T,3>
from BaseList< Matrix<T> > (which would otherwise appear to involve initialising a
3D object from a 1D one).

15The MultiHolder<T> type provides a somewhat basic object which can switch its dimensionality.

23

MultiMatrix(n,m,...) creates an empty matrix with the supplied dimensions, m×n×
The contents are undefined.

MultiMatrix(n,m,...,T v) creates a m× n× . . . matrix with contents initialised to v.

MultiMatrix(n,m,...,T* data) creates a m×n× . . . matrix with data address data (data
must be stored with last index varying most rapidly).

create(...) versions of these last three constructors are also defined, allowing a previously
initialised object to be (re)created.

size() return the number of data items.

dimension(n) returns the size of dimension n (0 . . . N − 1) where dimension 0 is the first
index (and varies most slowly). rows() and cols() can also be used for 2D objects.

clear() releases the memory allocation and returns the matrix to the undefined state.

row() returns the data array as a one-dimensional vector (BaseList<T>).

back() returns the last element, row, matrix slice etc. of 1, 2, 3 etc. dimensional objects.
A.back() is effectively shorthand for A(A.dimension(0)-1).

front() returns the first element, row, matrix slice etc. of 1, 2, 3 etc. dimensional objects.
A.top() is equivalent to, but marginally more efficient than, A(0).

The () operator returns individual elements and subsets of a MultiMatrix. If the argu-
ments are N integers, a single element is returned e.g. A(1,2,3) returns slice 1, row 2 and
column 3 etc. (if A is a 3D object). If fewer arguments are used, then the dimensionality of
the object returned increases accordingly e.g. A(1,2) returns row 2 of slice 1. The types of
the objects returned are: T& (0), BaseList<T> (1), Matrix<T> (2), MultiMatrix<T,M> (M).
Note that references can only be returned for element access so it may be necessary to store
the result in a temporary before it is passed as an output argument to other functions16.

Arguments that cannot be treated as simple indices are taken as index ranges and the ob-
ject returned is an IndirectMultiMatrix<T,M> where M is the number of index ranges. Hence
A(1,range(),slice(2,3)) returns a IndirectMultiMatrix<T,2> which refers to columns
2–4 of slice 1 (the empty range being equivalent to selecting the complete row range).
IndirectMultiMatrix is extremely flexible, but this comes at the price of signficant over-
head. In this case, for example it would be signficantly more efficient to first select slice 1 and
then select the submatrix i.e. cmatrix Aslice(A(1)); Aslice(range(),slice(2,3)) (this
would be a IndirectMatrix<T,range,slice>).

16This is quite a subtle point. . . There is no difficulty in directly passing a temporary that refers to an original

const object by reference to a function (e.g. const BaseList<T>&). This is not generally true for non-const

objects. An exception can be made, with care, when passing simple vectors. Here input arguments can be

passed using BaseList<T> as the overhead of creating a new BaseList is negligible. The new BaseList still

refers back to the original data. In this case, however, references should not be made to the passed object as

this will be out of scope when the function exits.

24

5.3 The ListList<T> data type

Using List< List<T> > is a very inefficient way to store a list of lists since separate memory
allocations are made for each list. The ListList<T> type is an efficient way to implement a
list of lists. In ListList<T>, the data entries are stored as a single List<T> together with an
index allowing the individual sublists to be accessed.

These objects can be created in a variety of ways
Modified

ListList<T>(BaseList<size t> sizes,BaseList<T> list) where the size of each block are
given in the sizes vector while the members are listed in list. Effectively list is partitioned
in blocks given by sizes. Omitting list creates the structure of the ListList<T>, without
filling it.

ListList<T>(BaseList<T> list,ListList<size t> indices) where the structure of the cre-
ated object is given by that of indices, which is used to specify the elements of list that
should be used to fill it. Hence ListList(H,find blocks(H,1e-10)) would find the
block structure of the (diagonal) H matrix and use this to construct the blocked version
of H.

ListList<T>(BaseList< List<T> > list of lists) creates a ListList<T> from an actual list
of lists.

Elements are accessed with the () operator. listlist(i,j) is the j element of the i list
(always numbered from 0). listlist(i) returns the i list (as a BaseList<T>). The elements
can be manipulated through these operators. As usual, checking of the indices is disabled if
the program is compiled with NDEBUG.

Other functions that return information on a ListList<T>:

items() returns the number of items in the object (the sum of the block sizes).

size(i) returns the number of elements in block i. Note that this is allowed to be zero.

blocks() or size() returns the number of blocks (lists) in the object. The presence of
size() means that a ListList<T> can be treated as list of BaseList<T> objects by
suitably generic algorithms.

structure() returns a List<size t> object which can be used to construct a new ListList<T>

with the same structure.

5.4 Blocked matrices

The BlockedMatrix<T> type is used to store Hamiltonians, propagators etc. in block diagonal
problems. It is not described in detail as these objects are not generally used independently.

New!
Although BlockedMatrix<T> functions as a BaseList<Matrix<T>> in use, there are important
differences: the dimensions of the different matrices are fixed when the object is created (and
cannot be changed independently). This allows a single block of memory to be allocated,
which reduces the overhead associated with dealing with many small matrices (especially
1× 1). Purely diagonal blocked matrices should be stored in a ListList<T>.

25

A ListList<size t> is used to describe the block structure of a matrix (see below for
a description of the ListList type). It is composed of a list of blocks, specified by a list of
row/column indices, e.g. the list {0, 3, 4} corresponds to a block consisting of rows/columns
0, 3 and 4 of the original matrix. Assuming that the original matrix spanned the full Hilbert
space, these List<size t> vectors can then be used to construct blocks of spin operators for
spin-1/2 systems using spinhalf system.

ListList<size t> find blocks(A,double tol =0) finds the blocks of a matrix A, taking
any element that is larger than the given tolerance to be non-negligible. The tolerance
will need to be greater than zero if there is any “noise” on the matrix elements.

ListList<size t> find blocks(List<double> evalues,tolerance) constructs a blocking list
assuming that diagonal elements differing by at least tolerance correspond to different
blocks of the Hamiltonian. Note that find blocks(diag(A)) effectively returns the
block strcture using the (secular) approximation that the off-diagonal elements can be
neglected.

6 NMR functions

6.1 Using spin systems

The spin system class (from spin system.h) is implemented as a List of a fundamental spin
type which is specified by an “isotope name” e.g. “13C” Unlike GAMMA, no other nuclear
properties are stored in the spin system; its job is as an input to functions that create spin
operators, rather than complete Hamiltonians.

The member functions of the spin type are

double gamma() returns the gyromagnetic ratio. Note that the gyromagnetic ratio of a known
isotope can be found independently using, for example, gamma("13C").

char* isotope() returns the isotope name e.g. ”13C”.

isotope(char* nucleus) sets the isotope from an isotope name.

float qn() returns the I quantum number.

size t nucleus() returns an internal number identifying the type of the nucleus.

size t deg() returns the number of spin states, 2I + 1.

Comparison of spin objects returns true if they are of the same type.
Spin systems are created using

spin system(n,char* nucleus) creates a system of n spins of type nucleus. nucleus must be
one of the known nucleus types, otherwise an InvalidParameter exception is thrown.

The number of spins is fixed when the spin system is created, but the identity of the spins
can be altered using e.g. sys(0).isotope("1H"), or using:

26

isotope(m,n,char* nucleus) set spins m to n to given nucleus type.

Note that the isotope type is used by higher level functions to identify groups of nuclei e.g.
pulses can be applied to the 13C spins etc.

() is used to address individual spins e.g. sys(1).isotope("13C") sets the type of spin
1 to 13C.

Other functions:

size t sys.nspins() returns the number of spins in a spin system.

size t sys.size() returns the dimensionality of the Hilbert space for the full spin system
i.e. the product of deg() for all the spins. N.B. The spin system may have been set
up to work on a sub-space of this full space, so don’t assume that the spin operators it
returns are square matrices of this size. Use the functions below.

size t sys.rows() and sys.cols() returns the number of bra and ket states respectively.

bool isdiagonal() returns true if the bra and ket states are identical (always true for simple
spin system objects.

6.1.1 spinhalf system

spin system is actually a subclass of a basespin system type. Another such subclass is
spinhalf system which creates spin operators for systems of spin-1/2 nuclei only. These can
be created extremely efficiently by “bit twiddling” rather than using direct products of single
spin operators. Another major advantage is that it can generate general submatrices of spin
operators. Higher level functions are defined (whenever possible) in terms of basespin system

so that they will function with any class derived from it. Individual spin states are stored in
state t type, which is defined as unsigned long by default17. Note that on most systems
this is different from the size t type used to store indices e.g. into the Hilbert space.

spinhalf system is used in the same way as spin system, with the exception that only
spin-1/2 nuclei nuclei are permitted. It is also possible to restrict the size of Hilbert used

spinhalf system(int N, const char* nucleus ="1H") specifies N spin-1/2 nuclei of the
given type with full Hilbert space i.e. 2N states.

spinhalf system(int N, const char* nucleus, BaseList<state t> states) specifies a sub-
space of a N spin-1/2 system where the (symmetrical) sub-space of bra and ket states
is given as a list of spin states (0 to 2N − 1). Note that the “blocking” functions address
the Hilbert space in terms of offsets defined as size t. These need to be converted to
state t in order to initialise a spinhalf system i.e. List<state t>(size t list).

spinhalf system(int N, const char* nucleus, BaseList<state t> bra-states, BaseList<state t> ket-states)
specificies a general sub-space of the 2N Hilbert space.

17Depending on the system, this limits the number of spins that be considered to 32 or 64. The type used

for state t can be changed to increase this limit, but requires re-compilation of the library.

27

rows() and cols() return the number of bra and ket states (or rows and columns in the
output operators) respectively.

brastates() and ketstates() returns a BaseList<state t> containing the bra or ket states
respectively.

isdiagonal() returns false if distinct bra and ket states were used to define the Hilbert
space.

6.2 Creating spin operators

The next step in a simulation is to create the spin operators needed. These functions can be
quite slow, so all the spin operators required are usually created at the start of a simulation.
The input to the spin operator functions is some form of spin system and the output is a
cmatrix, with the exception of functions that return List<double> for diagonal i.e. z spin
operators. Note that spin operators for large spin systems are always highly sparse. It is often
more efficient for multi-spin problem to create only submatrices of spin operators as they are
needed.

6.2.1 Product operators

Simple spin operators and product operators are created using I and F functions (sum oper-
ators) using the spin system type.

cmatrix I(sys,n,op) returns an operator for spin n of the specified spin system. op must be
one of ’x’, ’y’, ’z’, ’+’, ’-’, ’a’, ’b’ or ’I’ (identity operator). The α, β polarization
operators are only valid for spin-1/2 spins.

List<double> diag Iz(sys,n) returns a z operator as a diagonal matrix. This is equivalent
to, but substantially more efficient than real(diag(I(sys,n,’z’))).

cmatrix I(sys,char* ops) can be used to construct product operators. ops is a string that
list that gives the spin operator for each spin in the system. The length of the string
must equal the number of spins in the spin system. For example, I(sys,"xyz") would
return the operator I0xI1yI2z. It is somewhat more efficient than taking products of full
spin operators e.g. I(sys,0,’x’)*I(sys,1,’x’). Note that this function cannot create
operators of the form I1xI1y (see below).

cmatrix I(sys,m,char op m,n,char op n) is an interface to the routine above for bilinear
operators.

cmatrix I(sys,m,char* ops) constructs a product operator for a single spin i.e. I(sys,1,"xy")
will return I1xI1y.

List<double> diag Iz(sys,m,n) returns the product operator ImzInz as a real diagonal
matrix.

cmatrix F(sys,op) returns a sum spin operator for the complete spin system, Fx etc.

28

List<double> diag Fz(sys) returns the Fz operator for the complete system as a real diag-
onal matrix.

cmatrix F(sys,type,op) returns a sum operator for a given nucleus type e.g. F(sys,"13C",’z’).
The type can be specified as a name, "13C" or the internal nucleus number.

List<double> diag Fz(sys,type) returns the Fz operator for a group of spins.

The coherencematrix functions return a Matrix<bool> matching the Hilbert space in
which selected coherences are marked by true values.

Matrix<bool> coherencematrix(spin sys,coher(s)) determines the Fz operator for the given
spin system and uses this to calculate the coherence mask for the given coherence (speci-
fied as a single integer) or list of coherences (BaseList<int>) e.g. coherencematrix(sys,ExplicitList<2,int>(1,-1))
would return a matrix in which the ±1 coherences were flagged.

Matrix<bool> coherencematrix(spin sys,spins,coher(s)) calculates Fz for the selected group
of spins (by nucleus name).

Matrix<bool> coherencematrix(List<double> Fz,BaseList<int> cohers) is allows a pre-
determined Fz operator to be supplied.

Masks involving mixed heteronuclear coherences e.g. +1 on "1H", −1 on "1H" can be obtained
by combining masks with the logical operations, |, & etc.

The following primitive functions are also defined

cmatrix kronecker(A,B) returns the direct product A ⊗ B, where A and B can cmatrix

or integers. An integer represents an identity matrix of the corresponding size. If either
A and B is undefined, the result is B or A respectively. These functions are also defined
for real matrices.

cmatrix spinhalfop(char op) returns the simple spin-1/2 operators (pre-defined for speed).
op must be one of ’x’, ’y’, ’z’, ’a’, ’b’, ’+’, ’-’ or ’I’.

void spinop(cmatrix &dest,int m,char op,double scale =1.0) is a primitive function re-
turning a spin operator for a spin with m nuclear states, i.e. m = 2I + 1. The matrix
can be optionally scaled.

void expandop(cmatrix &dest,sys,m,matrix) returns the spin operator for spin m, matrix,
“expanded up” to the full Hilbert space of a spin system. An exception is thrown if the
size of matrix does not match the number of energy levels of the spin.

6.2.2 Tensor operators

A limited number of tensor operators are declared in tensorop.h. They are simply rank 1 and
rank 2 tensor operators constructed from combinations of product operators e.g. sqrt(6)*T2(sys,0,1,2,0)
gives the same matrix as

2*I(sys,0,’z’,1,’z’)-I(sys,0,’x’,1,’x’)-I(sys,0,’y’,1,’y’)

29

In other words, the basis set of the matrices is still the product basis 〈αα〉 etc., rather than a
tensor operator basis. libcmatrix is not tied to any particular basis, but the functions that
return spin operators invariably give results in this conventional product basis.

cmatrix T1(sys,i,m) returns the single spin tensor operators T1,m

T0 = Iz T± = ∓
√

2I± (3)

cmatrix T2(sys,i,j,l,m) returns the rank 2 spin tensor operators spanning the two spins i

and j of the given spin system; l = 0, 1, 2 and m = −l · · · l. Note that i and j can be
equal e.g. for quadrupolar spins.

T0,0 = −
√

1
3
(IixIjx + IiyIjy + IizIjz) (4)

T1,0 = − 1
2
√

2
(Ii+Ij− − Ii−Ij+) T1,±1 =

1
2
(IizIj± − Ii±Ijz) (5)

T2,0 =

√
1
6
(2IizIjz − IixIjx − IiyIjy) (6)

T2,±1 = ∓1
2
(Ii±Ijz + IizIj±) T2,±2 =

1
2
Ii±Ij± (7)

6.3 Spin state permutations

When dealing with problems of chemical exchange and symmetry, it is often necessary to deal
with spin permutations, that is changing the labelling of spins as a result of an exchange
process or symmetry operation. A permutation is described using the Permutation class
which holds the new index of the spin after the “exchange” e.g. {0, 2, 1} would correspond
to leaving spin 0 unchanged and interchanging spins 1 and 2. Similarly {1, 2, 0} would be
a cyclic permutation of the spins.

Permutation(const BaseList<size t>&) initialises a permutation from a list of spin in-
dices.

Permutation(const char*) allows permutations for small (<10 spin) systems to be ini-
tialised from the permutation expressed as a string e.g. Q’’021".

order() returns the permutation order i.e. the number of times the permutation can be
repeated before the original sequence is returned.

apply(List<T>& A′, BaseList<T> A) applies the permutation to a vector of quantities A

(which must be of the same length as the permutation vector).

apply(Matrix<T>& A′, Matrix<T> A) applies the permutation to a both the column and
row indices of a matrix, A.

The permutation is checked for validity when created; each index should be usd exactly once
and the permutation order must be well defined e.g. (21)(453) would not be valid since the

30

two subcycles have different orders (2 and 3 respectively). The Permutation type can be
manipulated as a List<size t> although elements should not be written to in case this breaks
the preconditions.

The following functions calculate how the permutation of spins affects the spin states

state t sys.permute(state t state,Permutation permvec) returns the state generated by
applying the permutation specified by permvec to state (which does not actually need to
be within the Hilbert space of sys!).

sys.permutation vectorH(List<state t>& newstates,Permutation permvec) creates the list
where newstates(i) is the index of the state within the Hilbert space (NOT the state it-
self!) resulting from applying permute to all the states of the Hilbert (sub)space of
sys. A Failed exception is thrown is any of the states created fall outside the subspace
specified by sys.

sys.permutation vectorL(List<state t>& newstates,Permutation permvec) does the same
but for the Liouville states (of which there are n2 for a Hilbert space of size n).

Thse functions can only be applied to spin systems with “diagonal” Hilbert subspaces. They
are very efficient for spinhalf system, considerably less so for spin system.

The list of permuted states contains all the necessary information on the permutation,
but the following convenience functions generate matrices, T , which can be applied as unitary
transforms to matrices in the Hilbert or Liouville space:

rmatrix sys.permutation matrixH(permvec) returns a matrix T such that THT ′ applies
the spin permutation to a matrix H in the Hilbert space.

rmatrix sys.permutation matrixL(permvec) returns a matrix T such that T
ˆ̂
H performs

the permutation on the superoperator H.

6.4 NMR functions

The functions declared in NMR.h are specific to NMR simulations. It is possible to write
simulations using only the data types and functions described above, and NMR.h is an optional
higher-level package of functions.

The first group of functions are used to construct the separate space and spin parts that
characterise Hamiltonians in solid-state NMR. The Hamiltonians are all in their high-field
forms and so many of the Hamiltonians are diagonal (with the z axis oriented conventionally
along B0). Corresponding diag functions provide the real diagonal Hamiltonians directly
and more efficiently.

double dipolar coupling(double γ1,double γ2,double r) returns the dipolar coupling
(in Hz) between two spins of specified gyromagnetic ratio and internuclear distance r.
SI units are used for consistency, i.e. r is in metres.

space T spatial tensor(double δ,double η =0) returns the pure rank 2 tensor for an in-
teraction of strength δ (e.g. as returned by dipolar coupling) and anisotropy η. It is

31

important to note that there is more than one convention for the normalisation of irre-
ducible spin tensors. Using spatial tensor together with, say, spin dipolar is always
“safe”, even if the normalisation convention is changed. N.B. spatial tensor is only
appropriate when working within the high-field approximation

space T spatial tensor(double iso,double δ,double η) as above, but including the isotropic
value corresponding element (0,0) of the resulting tensor. Note that it is often more con-
venient to treat this isotropic component separately.

cmatrix spin dipolar(sys,i,j) returns the spin operator for the dipolar coupling between
spins i and j. If i and j have different nucleus types, the coupling is truncated to its
heteronuclear form i.e. 2IizIjz.

cmatrix spin J(sys,i,j) returns the Hamiltonian of the scalar coupling (Ii · Ij) between
spins i and j. Note that the weak coupling Hamiltonian is given by I(sys,i,’z’,j,’z’)
or in its diagonal form by diag Iz(sys,i,j).

cmatrix spin quadrupolar(sys,i) returns the spin operator for the quadrupolar coupling
of spin i to first order. A Failed exception is thrown if i is not a quadrupolar nucleus.

(3I2
z − I(I + 1)I)/3 (8)

List<double> diag spin quadrupolar(sys,i) returns the quadrupolar Hamiltonian for spin
i as a real “diagonal matrix”.

Once the Hamiltonian has been constructed, propagators can be calculated. The propa-
gator for time period t is given by U(t, 0) = exp(−2πiHt) where H is independent of time.
Note that H must be expressed in Hz (assuming t is in seconds) and not angular units.

cmatrix propagator(cmatrix H,double t) returns the propagator for Hamiltonian H (ex-
pressed in Hz) applied for a given time (in seconds). H must be Hermitian since
hermitian eigensystem is used for diagonalisation. Other forms: SD.

List<complex> propagator(List<double> H,t) calculates the propagator for a diagonal
Hamiltonian. The result is complex diagonal. Other forms: SD.

complex propagator(complex a,double t) returns the dynamic phase factor for a 1 × 1
Hamiltonian (a) applied for a given time. This is trivially exp(−2πiat), but is included
for completeness.

In the high field approximation, the system Hamiltonian commutes with the sum mag-
netisation operators, Fz. Under these circumstances, the Hamiltonians (and propagators) for
different phases of the RF can be quickly evaluated from the propagator/Hamiltonian with a
given phase:

U(φ) = e−iφFzU(0)eiφFz (9)

Since the Hamiltonian is purely real for x phase RF, U(0) can be evaluated efficiently. Al-
though Eqn. (9) is easy to evaluate (since Fz is diagonal), it is efficient to store the exp iφFz

factors if the same rotation is used frequently. The relevant functions are

32

cmatrix rotatez(cmatrix U, List<double> Fz, φ) performs a “z-rotation” through an-
gle φ on U . Fz is for the nucleus (nuclei) involved.

rotatez ip(cmatrix& U, List<double> Fz, φ) performs the rotation “in-place”

rotatez ip(cmatrix& U, List<complex> facs) performs the in-place rotation given a previously-
evaluated exp(iφFz).

rotatezfacs(List<complex>& facs, List<double> Fz, φ) calculates exp(iφFz) given Fz

and φ. The function is trivial but helps to ensure sign conventions are consistent.

rotatezfacs(cmatrix& facs, List<double> Fz, List<double> φ) calculates exp(iφFz) for
a set of rotation angles, storing the results in the rows of facs

The following functions diagonalise the propagator, U(t, 0) and convert the propagator
eigenvalues, ωi, into those of corresponding effective Hamiltonian:

U(t, 0) = e−2πiHefft (10)

Heff = V ΛV † where λi =
arg(ωi)
−2πt

(11)

diag propagator(cmatrix& V ,List<double> &eigs,cmatrix U,t)

diag propagator(List<double> &eigs,List<complex> U,t) for a diagonal propagator

double diag propagator(complex U,t) returns the effective frequency for a “single-state”
propagator

It is important to note that the values of eigs are periodic with frequency 1/t; by definition
there are an infinite number of effective Hamiltonians which will give the same propagator.

As well as the propagators for evolution periods, it is also possible to calculate propagators
for delta pulses:

cmatrix Upulse(sys,θ,φ) returns the propagator for an ideal pulse of a given tip angle, θ,
and phase, φ, applied to all the spins. Phases can be expressed as numbers or as "x"

(0◦), "y" (90◦), "-x" (180◦) etc. It returns exp(iθHRF).

cmatrix Upulse(sys,type,φ,phase) returns the propagator for an ideal pulse of a given tip
angle and phase applied to nucleus type specified as a string e.g. "13C".

cmatrix Upulse(cmatrix& U,rmatrix Fx,BaseList<double> Fz,tip,phase) is an efficient
version which uses pre-calculated Fx and Fz operators. Other forms: SD.

The Upulse functions are useful for occasional use, but are relatively inefficient when
several propagators are needed for only slightly different pulses. The PulseGenerator object
defined in Sequence.h provides an alternative, more efficient approach.

New!
PulseGenerator(spin sys,nuclei) creates an object which generates pulses for a given set

of nuclei (generally specified as a nucleus name e.g. "13C") from a given spin system.
spin sys is any object that generates spin operators e.g. spinhalf system. The pulses
affect all nuclei if nuclei is omitted.

33

Pulses are returned from the () operator, which takes different arguments depending on
whether the pulse is soft or hard:

cmatrix obj(tip,phase) returns a hard pulse of given tip angle and phase. Also SD.

cmatrix obj(H,t,offres,tip,phase) returns the propagator for a soft pulse of duration t (in
s). The tip angle is that experienced by the on-resonance spins. offres is the resonance
offset, ∆ν. H is the Hamiltonian of the system (without RF!) during the pulse (if
undefined, it is taken as zero). The Hamiltonian during the pulse is

Heff = H +
θ

2π
HRF −Hoff (12)

where Hoff = ∆νFz is the off-resonance term. The propagator is then exp(−2πiHefft) exp(−2πiHofft).
Note how the propagator is corrected for the time spent in the frame rotating at the
off-resonance frequency. Also SD.

6.5 Spatial tensors

Spatial tensors can be represented in Cartesian form using a normal 3 × 3 cmatrix with
elements Rxx, Rxy etc. Tensors in terms of irreducible spherical tensors are represented using
the space T type which is defined in space T.h.

A space T has a maximum rank which sets the number of (complex) elements for which
space is reserved. So a space T of rank 2 has space for a single rank 0 component, 3 rank
1 components and 5 rank 2 components. It is not necessary, however, for all the ranks to
be active, although it is most economical of memory if the maximum rank in use matches
the maximum rank for which space is reserved. Attempting to access a component in an
inactive rank is an error, and will generate a BadRank exception if access checking is enabled.
Activating or deactivating a rank is rapid since the memory has already been allocated, but
elements in previously inactive ranks cannot be assumed to be zero. On the other hand, it is
not possible to add extra ranks without re-create-ing the space T.

It is important to note that the components of (symmetric) spatial tensors should satisfy
the symmetry relation Al,m = (−1)l+mA∗l,−m. It is easy to create spatial tensors where this
is not true by manipulating individual components, but many of the routines that use spatial
tensors, e.g. in MAS.h, will give undefined results if passed “corrupted” tensors18.

The various creation and deletion operations are:

space T(int rank,int flag =mxflag::maximum) creates a tensor of given maximum rank.
The activation of the ranks is determined by the optional flag; mxflag::none—no
ranks are activated, mxflag::maximum—only the maximum rank is activated (default),
mxflag::all—all ranks activated. The contents are undefined both for active and in-
active ranks.

bool have rank(rank) returns true if the specified rank is active (false is returned if rank
exceeds the maximum rank).

18This is a design weakness; the obvious solution is to create a “symmetric tensor” type which enforces this

symmetry

34

void ensure rank(rank) activates the specified rank (which cannot be greater than the max-
imum rank). The contents are unchanged by activation or deactivation.

void clear(rank) disactivates the given rank.

int rank() returns the maximum rank. This is negative if the space T is undefined.

int max rank() returns the number of the largest active rank. A return value of −1 indicates
that the tensor contains no active ranks.

The tensor type is unusual in that copy by = and copy by initialisation are subtly different.
A copy by initialisation, e.g. space T A(B), ensures that A is identical to B. When A=B is used,
however, A is already a valid space T. Since resizing the tensor is expensive, this will only be
done if the maximum active rank of B is larger than the maximum physical rank of A. For
example, if B was a rank 4 tensor with ranks 3 and 4 inactive and A was a rank 2 tensor, the
superfluous ranks 3 and 4 would be ignored in the copy, and A would remain a rank 2 tensor. If
rank 4 of B was active, however, A would be ‘expanded’ up to rank 4. This distinction is rarely
important in ordinary usage since the same maximum rank is usually used for all tensors in a
given problem.

Elements are accessed as usual by the () operator e.g. A(2,0) returns the rank 2, compo-
nent 0 element. (l) returns a BaseList<complex> referring to the specified (active) rank. The

Modified
elements are stored in the order Al,−1, Al,−l+1 etc. This allows tensor contents to be passed
as vectors to other functions. Access checking is controlled, as usual, by NDEBUG. Attempting
to access a rank that does not exist, or is inactive, generates a BadRank exception. An invalid
order index, e.g. A(2,3)=4, generates a BadIndex exception.

The operators *, *=, /= and / only allow tensor objects to be scaled by real scalars i.e.
double. The only other mathematical operations defined are the addition and subtraction of
two tensors: +, -, += and -=. In this case, inactive ranks are taken to be zero, allowing the
addition of tensors with different patterns of active and inactive ranks. When a new object is
being created (+ and -), the maximum rank of the output is the smaller of the two maximum
inputs ranks consistent with the largest active rank of new object. The situation is slightly
simpler for the in-place operations, A+=B and A-=B (which should be used if possible); A will
only be resized if absolutely necessary i.e. the maximum active rank of B exceeds the maximum
physical rank of A.

Naturally space tensors can be rotated. The three angles required to express a general
rotation in 3-space are always expressed in radians, and grouped together into the simple Euler
structure (Section 8.2). Often we need to apply the same rotation to a number of tensors.
Calculating the Wigner rotation matrix elements each time is inefficient, so an alternative is
to supply the rotation matrix directly.

space T rotate(space T A,Euler Ω) returns tensor A rotated by the specified Euler an-
gles.

space T rotate(space T A,cmatrix D) rotates a rank L tensor using the Wigner rotation
matrix D. This must be a square matrix of order 2L + 1 with element m + L, n + L

corresponding to D(l,m, n,Ω). This form is only applicable if there is a single active
rank (L) apart from any isotropic component.

35

space T rotate(space T A,List<cmatrix> D) is a general form of the above which will
work with an arbitrary tensor; the Wigner matrix for rank L is stored in element L of
the list, which should contain a matrix of the correct dimensions for each active rank of
A. Note that element 0 of the list (corresponding to the isotropic component) is ignored.

complex rotate(space T A,int l,int m,Euler Ω) returns the (l, m) element of tensor A

after rotation. Often we are only interested in a single component of a tensor after a
change of reference frame e.g. A(2, 0).

complex rotate(space T A,int m,cmatrix D) returns the (l, m) element of tensor A af-
ter rotation defined by the Wigner rotation matrix D. l is determined by the order of
D e.g. 5 for a rank 2 tensor.

Irreducible spherical tensors can be constructed from their Cartesian counterparts using
the A1 and A2 functions for first and second rank tensors respectively:

space T A1(double x,double y,double z) returns a rank 1 tensor

complex A1(double x,double y,double z,int l,int m) returns the (l, m) component of
the rank-1 tensor specified by the Cartesian components x, y, z. m can only take the
values 0,±1. The values returned are

A
(1)
0 = z A

(1)
±1 = ∓

√
1
2
(x± iy) (13)

space T A2(rmatrix R) constructs a tensor of maximum rank 2 from the matrix of Cartesian
components Rxx, Rxy etc. A Mismatch exception is thrown if R is not 3× 3. All ranks
(0, 1 and 2) are active in the output tensor, although the rank 1 components will be
zero if the input matrix is symmetric.

space T A2(rmatrix R,int l) constructs only one rank, l, of the maximum rank 2 tensor
specified by the input matrix, R. This avoids the activation of unwanted components of
the tensor.

complex A2(rmatrix R,l,m) returns a single component of the spherical tensor. The values
are calculated using

A
(2)
0,0 = −

√
1
3
(Rxx + Ryy + Rzz) (14)

A
(2)
1,0 = −i

√
1
2
(Rxy −Ryx) A

(2)
1,±1 = −1

2
(Rzx −Rxz ± i(Rzy −Ryz)) (15)

A
(2)
2,0 =

√
1
3
(2Rzz −Rxx −Ryy) (16)

A
(2)
2,±1 = ∓1

2
(Rxz + Rzx ± i(Ryz + Rzy)) A

(2)
2,±2 =

1
2
(Rxx −Ryy ± i(Rxy + Ryx))

(17)

36

space T A2(double xx,double yy,double zz) constructs a rank 2 tensor in its PAS from
the principle components. By definition the rank 1 component is null and therefore
inactive.

space T A2(xx,yy,zz,rank) constructs only one component of the rank 2 tensor. rank must
between 0 or 2, otherwise a BadRank exception is thrown.

double A2(xx,yy,zz,l,m) returns a single component of the rank 2 tensor specified by the
principal values of the Cartesian representation.

space T is in fact the complex instantation of a general irreducible spherical tensor type
Tensor<T> i.e. Tensor<complex>. This can be used to store “tensors” of arbitrary types, for
example Tensor<double> can be used to store the Wigner elements d

(l)
m0(β). It is even possible

to use a “tensor” of matrices, Tensor<cmatrix>.

6.6 Sample spinning

Simulation of NMR for spinning samples is considerably more involved due to the time-
dependence of interactions such as the CSA, dipolar interaction etc., but they divide into
two basic categories; inhomogeneous vs. homogeneous Hamiltonians. The calculations in the
two cases are quite different and so are handled separately:

6.6.1 Inhomogenous Hamiltonians

In this case, the Hamiltonian (and propagator) is defined uniquely by a so-called dynamic
phase for each interaction (which must all commute). The propagator for a given time interval
is determined from the integrated dynamic phase over the interval, which can be evaluated
analytically:

U(t2, t1) = exp iHΦ(t1, t2) (18)

Φ(t1, t2) =
L∑

m=−L

Bm

∫ t2

t1

eim(ωrt+γ) (19)

Bm =
L∑

l=−L

dL
m0(βRL)ARF(l,m) (20)

Since H is generally diagonal (i.e. pure z operators), the exponential is trivial. The m = 0
component is the time-independent “isotropic phase” (chemical shift etc.), while the m 6= 0
terms can be designated the “anisotropic phase”. The Φ are purely real if no odd rank
components are present in the spatial tensors. Since odd-rank terms are only present in the
legendary anti-symmetric J-coupling, complex dynamic phases are not allowed (it is not clear
what this would mean physically anyway). As a result, all tensors used must contain even
ranks only.

The DynamicPhase object can be used to calculate the Φ(t). It is particularly efficient if
values are only required at regular steps within the rotor cycle.

37

DynamicPhase(rotor speed, rotor phase, N,space T A RF,rotor info =MASRotorInfo) sets
up the object. The rotor speed is expressed in Hz and may have a sign (setting the sign

Modified
of the rotation). rotor phase is the rotor phase at t = 0. N is the number of observations
per rotor cycle. A value of zero leaves this unspecificied (calculation will then be slower).
The orientation etc. of the rotor is specified by a RotorInfo object which defaults to
rotation about the magic angle if omitted.

DynamicPhase(rotor speed, rotor phase, N,rotor info =MASRotorInfo) constructor leaving
spatial tensor unspecified.

double rotor phase() and rotor phase(phase) read and set respectively the rotor phase.

double rotor speed() and rotor speed(speed) ditto for the spin rate.

size t observations() returns the number of observations per rotor cycle or 0 if unspecified.

complex component(m) returns the value of Bm (in Hz).

double component0() returns B0, which is purely real by definition. This is the “isotropic”
part that is not refocused over the full rotor cycle, consisting of the isotropic chemical
shift plus second order quadrupolar shifts etc.

tensor(space T A) allows the interaction tensor to be changed. This is useful in powder
loops.

double anisotropic(double t1,double t2) returns the “anisotropic” component, Φaniso, of
the integrated dynamic phase for the time period specified.

double isotropic(double t1,double t2) returns the isotropic component of the integrated
dynamic phase, B0(t2 − t1).

double (double t1,double t2) returns the total integrated dynamic phase (isotropic + anisotropic)
for the time period.

double instant phase(t) returns the dynamic phase at t rather than an integrated phase.

The following functions are only valid if N has been specified:

double anisotropic(int n) returns the integrated anisotropic phase for t = 0 up to point
n in the rotor cycle (numbered from 0). The instantaneous rotor phase at the end point
is γ + 2πn/N .

double isotropic(int n) returns the integrated isotropic phase for point n.

double (int n) returns the total (anisotropic + isotropic) integrated dynamic phase.

List<complex> propagator(List<double> H,n) returns the propagator for t = 0 to point
n given a Hamilitonian (in its eigenbasis). Other forms: SD.

38

6.6.2 Homogeneous (system) Hamiltonians

The system Hamiltonian is again described in terms of its decomposition in terms of irreducible
spherical tensors:

H(t) =
∑

λ

L∑

l

l∑

m=−l

Aλ
RF(l, m)d(l)

m0(β)eim(ωrt+γ)Hλ (21)

We can sum over the interactions λ and rank l to give

H(t) =
l∑

m=−l

eim(ωrt+γ)Hm where Hm =
L∑

l

d
(l)
m0(β)

∑

λ

Hλ (22)

Although this is straightforward to program explicitly, it can be done for a general rotor
orientation using the SpinningHamiltonian type. The object is set up by adding the different
interaction Hamiltonians, specified by their spin and spatial components to the object one by
one.

SpinningHamiltonian(rotor info =MASRotorInfo) creates an empty Hamiltonian using in-
formation on the rotor orientation etc. from the supplied RotorInfo objects (defaults
to MAS). The spinning speed must be set before the object can be used.

SpinningHamiltonian(speed,phase =0, rotor info =MASRotorInfo) creates an empty Hamil-
tonian including the rotor speed and initial rotor phase.

add(space T A,H) adds an interaction to the system Hamiltonian, where H can be a full
matrix, a “diagonal matrix”, or a single element.

add(space T A,List<cmatrix> H) adds a non-secular Hamiltonian of rank 2. A must be
of rank 2, and the contribution to the component m of the periodic Hamiltonian is

L∑

n=−L

D2
mn(0, βr, γr)A2,−nHn (23)

L is determined by the number of matrices in H which should be 5, 3 (or 1), where H

is a list of 2L + 1 matrices corresponding to H−L . . .HL.

add(H) adds an isotropic Hamiltonian e.g. J . This can also be specified using a “diagonal
matrix”.

rotor speed(speed) and double rotor speed() set and return the rotor speed (in Hz).
Negative values will effectively reverse the direction of rotation.

rotor phase(phase) and double rotor phase() set and return the rotor phase at t = 0.

clear() resets the Hamiltonian to an empty state.

cmatrix component(m) returns the mth component of the Hamiltonian Fourier series, Hm.

39

In-place addition i.e. +=(H) is used to add in isotropic componenents (full matrices or “di-
agonal”).

If the Hamiltonians are purely real, then the more efficient RealSpinningHamiltonian

type can be used. SpinningHamiltonian objects can be combined using the += and -=

operators.
The Hamiltonian at time t is read out using the () operator19, either in new-object form

obj(double t) or supplied-destination form, obj(cmatrix& H,t).
Propagators are calculated using XXXPropagator objects e.g. for MAS

MASPropagator<M>(obj,νr,α0,dt) creates a Propagator object from an object returns a
Hamiltonian of type M as a function of rotor phase e.g. SpinningHamiltonian (MASPropagator<cmatrix>)
or RealSpinningHamiltonian (MASPropagator<rmatrix>). The rotor phase is given
by φ(t) = α0 + 2πνr. Note the implied sense of rotation; some treatments use φ(t) =
α0 − 2πνr. dt is the integration time-step over which the Hamiltonian is assumed to be
effectively constant.

The (t1,t2) (new object) or (cmatrix& U,t1,t2) functions then calculate propagators for the
time interval t1 to t2.

Multiple propagators can be calculated using

propagators(List<cmatrix>& Us,Propagator obj,t1,t2) creates n evenly spaced propaga-
tors, U(t1 + ∆t, t1), U(t1 + 2∆t, t1 + ∆t) to U(t2, t1), where ∆t = (t2 − t1)n. n is
determined by the length of the Us vector. This is useful for functions that require a set
of propagators over a rotor cycle.

6.7 Propagation

Propagation (taking a set of propagators and calculating a NMR signal) is handled by spe-
cialised objects declared in Propagation.h. These share the following general characteristics:

• The general scheme is: initialisation of object, specification of propagator(s) or Hamil-
tonian(s) (where appropriate), specification of initial density matrix, σ0 and detection
operator,Q, read out of FID or spectrum (the last steps are combined in time-domain
propagation).

• set U(U) or set U(U,∆t) sets the propagator for the dwell time, ∆t, for time- and
frequency-domain propagation objects respectively. Note that frequency domain propa-
gation requires the diagonalisation of the propagator in order to determine the effective
frequencies, − ln(U)/2πi∆t. This should be avoided if possible. U can be a full matrix
or a diagonal matrix (i.e. List<complex>).

• set H(H) or set H(U,∆t) allows the propagation to be specified in terms of the (ef-
fective) Hamiltonian over the dwell time for frequency- and time-domain respectively. If
H is real (rmatrix or List<double>) then the eigenbasis is purely real.

19In earlier releases, SpinningHamiltonian etc. were expressed in terms of the rotor phase rather than time.

Attempts to use the objects in this way (i.e. without setting the rotation rate) should be caught at run time

40

• σ0 and Q can be complex matrices, real matrices or real diagonal matrices (List<double>).
Propagation involving real operators is significantly faster if the eigenbasis is also real (see
above). If σ0 and Q are both hermitian, then the FID is necessarily purely real. Hence
time-domain objects generally have distinct add FID and add FID hermitian functions
which accumulate the signal into complex and double List objects respectively. Inputs
are not checked for hermiticity.

• Signals are implicitly calculated from tr(Qσ) i.e. if σ0 = F+ (+1 coherence), Q needs to
be F−.

• The fundamental add FID(FID,weight,σ0,Q) member functions in time-domain objects
accumulate the time-domain signal multiplied by a (real) scaling factor, weight, (e.g. for
powder averaging) to a FID stored as a real or complex vector, for the specified σ0 and
Q. The corresponding FID(n,σ0,Q objects return a single unweighted FID of n points.
If Q is omitted, it is taken as σ†0. Where accepted, this approximately halves the number
of similarity transforms required.

• If σ0 = Q† then the spectrum is purely real in most cases. These cases are handled by
distinct “matched excitation detection” objects e.g. StaticSpectrumED.

• The functions observe(σ0,[Q]) set σ0 and Q (taken as σ†0 if omitted) immediately prior
to frequency-domain propagation (after the Hamiltonian(s)/propagator(s) have been
specified). The object is then used as an iterator: transitions (in the form of amplitude,
frequency pairs) are read out of the object until the transitions are exhausted:

double amp,freq;
object.observe(σ0)
while (object(amp,freq))

std::cout << "Amp: " << amp << " Freq: " << freq << std::endl;

The resulting transitions can be saved to a file, added to a spectral histogram or FID.
The add FID(List<complex>& FID,amp,freq) function can be used to add a signal to
a FID, but is generally slow compared to using a histogram (cf. the Histogram type) or
direct time-domain calculation. It is important to note that the order and number of
transitions returned is not defined. Transitions with zero intensity will often be skipped.
Amplitudes are real for ED objects, complex in the general case.

Static propagation can either be done in the conventional eigenbasis or, more efficiently, in
the eigenbasis of the Hamiltonian.

As a general rule, the time-domain methods tend to be more efficient for FIDs of moderate
length, while the frequency domain methods are more flexible.

In many important cases, most notably evolution under a free precession, it is only neces-
sary to calculate the evolution within blocks of the density matrix corresponding to certain co-
herences. Rather than consider the full density matrix and propagators spanning the complete
Hilbert space, σ(t) = U(t, 0)σ(0)U(t, 0)†, we can consider σRC(t) = UR(t, 0)σRC(0)UC(t, 0)†

where UR and UC are propagators for the “row” (bra) and “column” (ket) states of the block,

41

RC. In general we need to sum the signals from a series of blocks, and the “rows” of one block
often make up the “columns” of the next, or vice versa.

This “off-diagonal” propagation is achieved by qualifying Hamiltonians/propagators to
indicate whether they are associated with ”rows” (’R’) or “columns” (’C’) of subsequent σ0

and Q matrices e.g. set H(’R’,H) sets the “row” Hamiltonian to H. shuffle(’R’/’C’)
moves any existing “row” (or “column”) data into the “column” (or “row”), ready for the
“row” (or “column”) data to be updated. This allows the off-diagonal blocks to be easily
stepped through:

obj.set H(’R’,Hs(0));
for (int blk=1;blk<blks;blk++) {

obj.shuffle(’R’);
obj.set H(’R’,Hs(blk));
obj.add FID(FID,1.0,σ0,Q);

}

Other points to note

• A single propagator can be used for both diagonal and off-diagonal propagation e.g.
subsequently using obj.set H(H) will force “diagonal mode”.

• The Hamiltonian/propagators for off-diagonal propagation involving a Hilbert subspace
of a single dimension can be passed efficiently as single scalar elements i.e. double or
complex.

• The swap() member function interchanges row and column designations which is useful
if working with blocks both above and below the diagonal.

• Off-diagonal propagation introduces the special case of Q = σ0 = 1. This is useful
for calculation of the free-precession of a spin S coupled to I spins. Hamiltonians and
propagators are blocked according to the spin state of S, e.g. for evolution of the +1
coherence for S spin-1/2:

S(t) = tr(S−U(t, 0)S+U(t, 0)†) (24)

U(t, 0) =
(

Uα(t, 0) 0
0 Uβ(t, 0)

)
S+ =

(
0 1
0 0

)
(25)

This case is specified by observe() and add FID(...) functions that omit σ0 and Q.

The StaticSpectrum and StaticSpectrumED objects are used to calculate spectra from
systems characterised by a single propagator (or effective Hamiltonian); this applies to simple
static problems, or periodic systems which are sampled once per period20.

There are two time-domain propagation objects for time-independent Hamiltonians, StaticFID U

and StaticFID H. The former uses the simple method of repeated similarity transformation
of the density matrix by the supplied propagator (from set U) to determine the evolution.
StaticFID H uses propagation in the eigenbasis of the (effective) Hamiltonian, specified by
either the Hamiltonian or propagator over the dwell time.

20If dealing with powder samples under MAS, it is necessary to integrate over the γ angle which can only be

done efficiently using the MAS-specific objects

42

Method general hermitian ED ED + hermitian
GammaPeriodicFID 0.9 (0.7) 0.9 0.6 (0.4) 0.6
GammaPeriodicSpectrum 1.0 (0.30) 0.9 0.6 0.7 (0.3)

Table 6: Time taken (ms) for 2 spin-1/2 propagation using time- and frequency-domain meth-
ods for: general problem σ0 = Fx, Q = F+, hermitian (σ0 = Fx and Q = Fy), matched
“excitation-detection” (σ0 = F+, Q = F−), ED + hermitian (σ0 = Q = Fx). See runtesthomo
for arguments to testhomo. Brackets show times for propagation “blocked” by Fz i.e. prop-
agating the 2 × 1 Fz = −1 ↔ Fz = 0 and Fz = 0 ↔ Fz = −1 blocks. For comparison, the
baseline propagation method (using periodicity of the propagators, explicit γ angle integra-
tion) took 3.8 ms. Note that the time taken to calculate the propagators in this case was 3.6
ms, so the differences are not particularly significant overall!

6.7.1 Propagation under a homogeneous periodic Hamiltonian

If the Hamiltonian is periodic, the NMR signal can be calculated efficiently if the sampling
is synchronised with the periodicity. In the event where the sampling occurs only once per
rotor cycle (or integer multiple of a rotor cycle), the only propagator required is U(∆t, 0)
(where ∆t is the dwell time) and the problem is essentially identical to the static case i.e. the
StaticSpectrum objects can be used.

Often, however, we are interested in the case where the signal is sampled more than once
during the rotor cycle. In general, we can calculate the density matrix at arbitrary time from
the set of propagators U(n∆t) where 0 < n ≤ N and N∆t = τr (the rotor period)21. The
specification of the propagators defining the density matrix evolution is done by functions of
the form set Us(List<cmatrix> Us).

The objects PeriodicSpectrum, PeriodicSpectrumED and PeriodicFID are used for fre-
quency domain propagation with general and “matching” σ0 and Q, and time-domain propa-
gation respectively. The transitions can be restricted to those associated with a single sideband
with the member function

sideband(m) where −N/2 ≤ m ≤ N/2 (N/2 and −N/2 are equivalent for N even). The
restriction is maintained until if and when sideband is called again.

The corresponding GammaPeriodicSpectrum, GammaPeriodicSpectrumED and GammaPeriodicFID

objects perform the same function, but include integration over the γ powder angle. In
this case, the propagators are calculated for the M steps of the powder integration, while
the number of observations per rotor cycle is specified when the object is initialised e.g.
GammaPeriodicFID obj(N). M must be a multiple of N .

Table 6 shows comparisons of time and frequency domain propagation for different pairs
of σ0 and Q. Note how the matched “excitation-detection” is significantly faster, as is the
propagation “blocked” by Fz (the difference would be even greater for larger problems).

21Usually the periodicity is assumed to be due to sample rotation. It can equally well be periodic RF or even

periodic RF + sample rotation (providing they are synchronised).

43

6.7.2 Propagation under inhomogeneous Hamiltonians

Although purely inhomogeneous Hamiltonians are relatively rare, they can be computed very
efficiently and are an important special case. The role played by the propagator for homo-
geneous Hamiltonians is replaced by a simple integrated dynamic phase Φ(t, 0). These can
be calculated efficiently, especially for rotor-synchronised sampling, using the DynamicPhase

object. The input to the inhomogeneous propagation functions is simply a List<double> of
the phases Φ(n∆t, 0), 0 < n ≤ N (N∆t = τr). Often the Hamiltonian is made up of a number
of interactions with potentially different time-dependencies (and hence dynamic phases) but
with mutually commuting Hamiltonians (so the overall Hamiltonian is still inhomogeneous).

The objects InhomogeneousSpectrum, InhomogeneousSpectrumED, GammaInhomogeneousSpectrum
or GammaInhomogeneousSpectrum, InhomogeneousFID and GammaInhomogeneousFID work in
the same basic fashion as described above, but with the following differences:

• Rather than providing a set of propagators, the evolution is specified by passing a set of
(integrated) dynamic phase(s) for the Hamiltonian(s).

• set phases(List<double> phases,[period]) specifies the set of N or M dynamic phases
(with or without gamma integration). The period of Hamiltonian must be specified for
time-domain methods. Multiple interactions are included by passing a rmatrix whose
rows correspond to the different interactions.

• set phases(DynamicPhase obj) provides the dynamic phases in terms of a DynamicPhase
object. A list of objects is used for multiple-interaction Hamiltonians.

• set H(H) or set H(’R’/’C’,H) sets the Hamiltonian for “diagonal” or “off-diagonal”
propagation. H can be a real or complex matrix, a diagonal matrix or single element
(off-diagonal propagation). set Hs(Hs) is used for multi-interaction Hamiltonians—the
rows of the matrix correspond to the different (diagonal) Hamiltonians.

• The Hamiltonians and dyanmic phases can be updated independently e.g. within a
powder integration loop.

The observation and detection operators are set as for StaticSpectrum or StaticSpectrumED.
In addition to their iterator mode of motivation, transitions can then be read out as sideband
manifolds from frequency-domain objects:

double frequency(r,s, n =0) returns the frequency of sideband n of the r–s transition:
viso + nvr. If n is omitted (or 0), the position of the centreband is returned. Assuming
viso is independent of the powder angle, this is only required outside any powder loop.

add(List<double>& amps,r,s) accummulates scaled sideband intensities for the r–s transi-
tion. This is most useful when the sideband positions (determined by viso) are indepen-
dent of powder angle. Note that some transitions may be “forbidden” i.e. the amplitude
is exactly zero. In this case amps will be unchanged.

The add functions cannot be used simultaneously with the normal iterater behaviour since
they both modify internal buffers. They can be used sequentially, however, if the iterator is
used first.

44

The transition numbers refer to the eigenbasis of the Hamiltonian, which does not neces-
sarily correspond to the standard Zeeman eigenbasis. Rather than call add for each possible
transition, the amplitudes member function can be used to return the matrix of transition
probabilities. The matrix may be real (double) or complex, depending on the type of the
object. The type used for transition amplitudes is obj.transition type.

6.8 Powder averaging

Routines for powder averaging are declared in powder.h. The different methods are derived
from the base class PowderMethod, which can be used either as an iterator or obtaining
orientations by their index:

int next(Euler& powder,double& weight) retrieves the next powder angle in the sequence,
updating the Euler angles and the weighting factor for the orientation. The function
returns 0 if no more orientations were left.

void reset() resets the iterator to the start of the sequence.

void orientation(Euler& powder,double& weight,size t index) returns the Euler angles
and weighting factor for orientation index where index runs from 0 to orientations()−1.
A BadIndex exception is thrown if index is out of range.

size t orientations() returns the number of orientations in the sequence.

The PowderMethod weighting factors must be normalised i.e. they sum to unity over all the
orientations.

The powder averaging methods declared are:

PlanarGrid(int alpha steps,int beta steps, range =sphere) samples α and β linearly. The
weighting factor is sin(β). The range can be set to sphere (default) to sample the com-
plete set of polar angles, range can be one of sphere, hemisphere or octant to average
over the ranges:

sphere 0 ≤ α < 2π, 0 < β < π

hemisphere 0 ≤ α < 2π, 0 < β < π/2

octant 0 ≤ α < π/2, 0 < β < π/2

Obviously the problem must have the necessary symmetry before the reduced ranges
can be used! A single polar angle can be integrated by setting alpha steps or beta steps
to 1. In this case, the unsampled angle is unchanged and the weighting of the points is
equal.

SphericalGrid(int alpha steps,int beta steps, range =sphere) samples the α linearly while
β is stepped non-linearly such that the size of the volume element is constant. Although
this rarely works better than PlanarGrid, it is useful for the cases where the volume
element needs to be constant. Note that, unlike PlanarGrid, an InvalidParameter ex-
ception is thrown if either alpha steps or beta steps are one (or less). Use PlanarGrid
to integrate over a single polar angle.

45

PlanarZCW(int n,range =sphere) uses “ZCW” sampling of α and β treated as planar (rather
than spherical variables). The number of points in the sampling is the nth Fibonacci
number. n = 10, for example, gives 144 points. The weighting factor remains sin(β).
Odd as it may seem, this apparently gives better results than the ZCW sampling which
treats α and β as angles (SphericalZCW)! Again the integration can be altered using
range.

SphericalZCW(int n,range =sphere) uses the ZCW spherical treating α and β as spherical
angles i.e. the volume element is constant. Counterintuitively, this is often less effective
than PlanarZCW, but does have uses when constant volume elements are required.

ExplicitSampling(rmatrix& sampling) allows arbitrary sampling patterns to be used. The
sampling matrix must be a 3 column rmatrix, with the columns being the values of
α, β and the weighting factor in that order. This is convenient for complex sampling
patterns stored in files. Note that the contents of sampling are not copied and so its
contents should not be changed while the sampling is being used.

PowderSingle(Euler Ω) returns the single orientation Ω.

These powder methods only apply for integration over two (or one) Euler angles, but can
easily be combined with an independent sampling for the third γ angle either “manually” or
using the WithGamma PowderMethod:

WithGamma(PowderMethod method, N) create a new PowderMethod based on a two-angle
method but adding averaging over N equally spaced γ values. The total number of
orientations is the product of N with the number of steps in the base method.

WithGamma copies the PowderMethod argument so it is not necessary for this object to persist
over the lifetime of the WithGamma object e.g. WithGamma(PlanarZCW(5),8) will work as
expected, even though the original PlanarZCW object is destroted at the end of constructing
WithGamma.

6.9 Superoperators

A very limited number of functions are provided for superoperator arithmetic. Superoperators
can be represented by matrices (in Louiville space) and there is little reason to provide a
complete new data type. One of the rare times that the superoperator nature of the matrices
appears is when they interact with matrices expressed in the Hilbert space e.g. ˆ̂

Uσ where σ

and ˆ̂
U are n × n and n2 × n2 matrices respectively. Rather than “flatten” σ into a 1 by n2

vector for the purposes of multiplication, the following function is provided

superop multiply(cmatrix& C,cmatrix A, cmatrix B) where C = AB. If nA = n2
B, A

is assumed to be the superoperator and B the ordinary matrix, and vice versa if nB = n2
A

(right and left multiply respectively).

The following functions generate operators in Louiville space

cmatrix commutator(cmatrix H) creates the commutator [H,] (H ⊗ I − I ⊗HT).

46

cmatrix double commutator(cmatrix H) creates the double commutator [H, [H,]] (H2 ⊗
I + I ⊗ (HT)2 − 2H ⊗HT).

These functions are also defined for real matrices.
See also Section 6.3 for functions related to chemical exchange and other “spin permuta-

tions”.

6.10 Sequence.h

Sequence.h contains data types and code for the definition of general pulse sequences, together
with the code for calculating propagators during pulse sequences for both static and spinning
experiments. For simple pulse sequences, it is simpler to use the Upulse and propagator func-
tions to calculate sequence propagators. For complex sequences and/or MAS pulses sequences,
this becomes too cumbersome and this more sophisticated approach is required.

The steps involved are

1. Create the elements of the pulse sequence, hard/soft pulses, decoupling fields etc.

2. Assemble elements into a pulse sequence e.g. WHH4, MREV8 etc.

3. A Propagator object is derived from the sequence to evaluate propagators.

The parameters and timing of the pulse elements can be modified without recreating the
whole sequence. Thus makes it straightforward to optimise sequences.

6.10.1 Creating the pulse sequence elements

The elements of pulses sequences such as hard pulses, CW RF periods etc., are created as
objects (HardPulse and CWPulse respectively) e.g. a 90 degree x pulse on 1H. The objects
contain a reference to a supplied PulseGenerator object which is used to calculate the prop-
agators required. The PulseGenerator objects must remain in scope through the calculation.

The RFEvent objects currently defined are:

HardPulse(PulseGenerator pgen,double duration,double vRF,double phase) creates a hard
pulse object. The nutation angle is specified in terms of an RF nutation rate, νrf, and
nominal pulse duration (i.e. θ = 2πt/νrf). The duration and nutation rate have no other
significance for a hard pulse, i.e. the pulse is always of zero duration as far as timing is
concerned.

SoftPulse(PulseGenerator pgen,double duration,double vRF,double phase,double offset)
creates a soft/non-delta function pulse of given duration and resonance offset. An
InvalidParameter exception is thrown if the duration is negative.

CWPulse(PulseGenerator pgen,double duration,double vRF,double phase,double offset)
creates an “RF field” object, expressed in terms of resonance offset and power (in Hz).
CWPulse and SoftPulse are basically different ways of expressing a finite RF field. The
duration of a CWPulse is expressed in terms of the cycle time scaling (see below) i.e.
its duration may scale as the overall duration of the sequence changes. The duration of
SoftPulse, however, is expressed directly in seconds and is not scaled.

47

A sequence consists of a series of “timed events” i.e. RFEvent objects together with a time
parameter that specifies when the event occurs.

vRF, phase, duration and offset can be freely modified after the object has been created
e.g.

duration(t) sets the duration object to t. Note again the different units for the duration
parameter of CWPulse.

duration() returns the duration of object.

6.10.2 Creating the pulse sequence

A sequence object is a list of TimedEvent objects (RFEvents plus a timing) created with

Sequence(timescale) where timescale is an optional ‘time scaling’ factor (e.g. the rotor period
for rotor sychronised sequences). If omitted, this defaults to 1 i.e. the timings are
expressed directly in seconds.

Events are added using

TimedEvent& push back(RFEvent ev,t,char sync =’|’) adds a single event, returning a
reference to the TimedEvent object created. t is the time origin of the event. This will
be either an absolute time (in s) or as a fraction of the “timescale”. The synchronisation
character (’+’, ’-’ or ’|’) dictates how the start and end points of SoftPulse events
are related to the time parameter. With ’+’, the rise of the pulse is synchronised with
the time origin; ’-’ synchronises with the end of the pulse, while ’|’ means that the
centre of pulse is synchronised. Synchronisation is not applicable to CWPulse (effectively
always ’+’ sychronised). In the case of HardPulse events, the synchronisation flag is a
‘hint’ indicating whether a pulse should be included within an integration interval. For
instance, if a ’-’ pulse is encountered at the end of an integration interval, it will be
included, while a ’+’ event is assumed to belong to the next interval (e.g. rotor cycle)
and will not be included. A ’|’ event exactly at an interval boundary is ambiguous and
will trigger a warning.

push back(List<RFEvent> evs,t,char sync =’|’) adds a windowless sets of events. The
first element is at time t, the second t + ∆t0 where ∆t + 0 is the duration of event 0,
etc. The same synchronisation is used for all elements.

The Sequence thus consists of an ordered list of TimedEvent objects which combine an
RFEvent with a time point and sychronisation indicator. This time point can be altered
subsequently using the time(double t) member function.

Note that the TimedEvent objects contain a reference to the original RFEvent object.
Modifying this object, e.g. the tip angle of a pulse object, will therefore change this pulse
wherever it has been used. In most situations this is exactly what is needed. If, for example,
the 90◦ pulse is mis-timed, this should be reflected in all the 90◦ pulses etc. If, on the other
hand, two 90 degree pulses have very different functions e.g. one is sets the initial polarisation,
while another is part of a synchronised pulse sequence, then it is better to create two distinct
Pulse objects.

48

period(double period) sets (or changes) the period of the sequence. This allows, for instance,
the rotor speed to be changed easily. A period of 0 corresponds to no scaling (static
sequence). A negative period is illegal.

period() returns the period of the sequence, 0 if none.

A SequencePropagator object is used to evaluate propagators. The object is created with
one or more Sequence objects together with a “period”. A non-zero period indicates that the
sequence is cyclic and should be should be repeated with the given period. This period is
independent of any period parameter used to establish the timing of the pulses, although
these would normally be the same e.g. for rotor synchronised sequences. If the period is zero,
the sequence is not repeated. Using more than one pulse sequence is necessary when there is
more than one “channel”, particularly if the pulses on different channels are not synchronised.
It is not strictly necessary to dedicate a sequence to a particular nucleus; the only requirement
is that the elements within any given sequence be time-ordered.

SequencePropagator(H, intdt, sequence,period,tol =1e-9, verbose =0) initialises the ob-
ject with a single sequence and associated period. H is the system Hamiltonian. indt is
the integration for time-dependent Hamiltonians (omit for static Hamiltonians). verbose
controls how much information is output during evaluation (0 corresponding to none).
The tol parameter is described below.

SequencePropagator(H, intdt, BaseList<Sequence> seqs,periods,tol =1e-9, verbose =0)

initialises the object with multiple sequences. periods can either be a single, common
period or a BaseList<double> of individual periods for the different sequences.

Note that H should normally be one of the Blocked Hamiltonians described in MetaPropagation22.
The optional tolerance parameter, tol, allows for imperfect pulse timing. If, for instance,

an RF event is scheduled at exactly 5 ms, and the propagator is calculated up to a nominal
t = 0.005, we cannot be certain whether the pulse is included or not, since the accumulated
time, time(), may not be exactly 0.005000 due to rounding errors. Often this is not important;
if the pulse has not been included in this time interval, it will be in the next one. An exception
is when the end of the propagator calculation coincides with the final pulse which must be
included if the calculation is to be meaningful. Under these circumstances tol should be set to a
small (positive) non-zero value. Any ’-’ synchronised events occurring in the “buffer” period
time+incr±tol/2 are included in the propagator. ’+’ synchronised events encountered in this
interval are not included and force the calculation to stop, since this indicates that another
segment has started. ’|’ events are included, but generate warnings. The synchronisation
flags should be used whenever possible to help the SequencePropagator decide whether an
event is to be included.

Most Propagator objects calculate propagators for arbitrary time intervals (t1–t2). Sequence’s,
on the other hand, are best evaluated in strict time order, as it is relatively “expensive” to

22An internal interface “describes” the different Hamiltonians for the benefit of SequencePropagator and

other high-level objects. Compilation will fail with rather cryptic error messages if you try to pass an object

that is not compatible with this interface.

49

“break into” to a sequence. The SequencePropagator object stores the previous state so that
sequence evaluation i.e. t1–t2 followed by t2–t3 etc. is evaluated efficiently. If the following
time interval does not follow from the stored state, the object must be “reset”, making the
evaluation much less efficient.

6.11 Data processing

Histogram.h creates a number of histogram types that can be used to accummulate spectra.
These are all derived from the BaseHistogram type which declares the (virtual) function add(T

a,double f) which adds an amplitude a (of type T) to the histogram. The histogram objects
are created from a List<T> (or BaseList<T>) and essentially simply define a method for
adding data to the list which is created and can be manipulated outside of the the histogram.
Obviously though the underlying List should not be destroyed or have its length changed
while the histogram is active! The following histogram types are provided

Histogram(BaseList<T> vector,fmax) creates a histogram whose “x” scale runs from 0 to
∆f . The number of bins, N is determined by the length of data list, vector. vector is
not reset to zero. The bins are centred at 0.0, fmax/N , 2fmax/N etc. and run from 0 to
N − 1. So small negative values, for instance, will fall into bin 0, while values close to
fmax will fall outside the histogram. Values that fall outside the histogram are ignored.

FoldingHistogram(BaseList<T> vector,fmax) creates a histogram whose “x” scale has a pe-
riod fmax, that is, values are folded into the range 0 to fmax by adding/subtracting
multiples of fmax. Values cannot be “lost” from such a histogram.

InterpHistogram(BaseList<T> vector,fmax) creates a histogram for the x range 0 to fmax,
but in which intensity is distributed between the two bins centred at x0 and x1 which
straddle a given data item, x. The fractions of the intensity a which are added to the
two bins are given by

f0 =
x− x0

x1 − x0
f1 = 1− f0 =

x1 − x

x1 − x0

The interpolation of intensity helps to reduce the rounding error caused by “quantising”
the continuous x scale on to the discrete number of bins. It does not, however, address
the root of this rounding error and it is generally more satisfactory to increase the
number to bins to reduce the error.

FoldingInterpHistogram(BaseList<T> vector,fmax) combines a periodic x-scale with linear
interpolation.

The following functions, declared in cmatrix utils.h, implement Fast Fourier Transforms
for one and two-dimensional data sets:

void fft ip(BaseList<complex> &vector,int sign =FT FORWARD,double scale =1) performs
the Fast Fourier Transform of a vector (passed as a List of complex numbers. The sign
should be ±1. To improve code readability and minimise inconsistencies the constants

50

FT FORWARD (−1) and FT BACKWARD (1) can be used to express “normal” Fourier trans-
formation of a time-domain signal and “back” Fourier transformation of a spectrum
respectively. The first data point is multiplied by the scale factor before transformation.
For signals that decay towards zero (as opposed to true periodic signals) this should
normally be set to 0.5 to avoid putting an offset in the spectrum

List<complex> fft(BaseList<complex> vector,sign =FT FORWARD,scale =1) is the corre-
sponding new-object form.

void fft ip(cmatrix &matrix,sign =FT FORWARD,scale =1) Fourier transforms each row of
data matrix in place. Note this is not a full 2D transform. Also: fft.

void phasefft ip(cmatrix &matrix,sign =FT FORWARD,rscale =1,cscale =1) performs a 2D
Fourier transform on a “phase-modulated” data set (i.e. one with no sign discrimination
in the t1 dimension). This is equivalent to (but significantly more efficient than) the
sequence fft ip, transpose, fft ip, transpose. The scaling factors for the rows and
columns can be set separately e.g. for data sets with both imaging and spectroscopic
dimensions. Other forms: new-object (phasefft).

void ampfft ip(cmatrix &cos,cmatrix &sin,sign =FT FORWARD,rscale =1,cscale =1) Fourier
transforms an “amplitude modulated” (States) data set described by a set of “cosine
FIDs” and “sin FIDs” (there is little need for a true hypercomplex matrix type). The
result is returned “in place” with the complex component in the first argument and the
(generally uninteresting) hypercomplex component in the second matrix argument.

void ampfft ip(cmatrix &cos,sign =FT FORWARD,rscale =1,cscale =1) performs an amplitude-
modulated FT assuming a purely cos modulated data set. Only the “normal” complex
part of the result is retained. Other forms: new-object (ampfft).

As usual, the in-place functions should be used if possible. Note that only the simple base-2
Fast Fourier Transform is used, i.e. the number of data points must be exactly a power of
two otherwise an InvalidParameter exception is thrown. The function ispowerof2(int n)

returns a true value if n is a (positive) power of two. Note that n = 1 is now considered a
power of 2 !

It is also possible to perform “ordinary” Fourier transforms, although these are significantly
slower:

List<complex> ft(BaseList<complex> &vector,int sign =FT FORWARD,double scale =1)

performs the “slow”Fourier transform of a vector (passed as a List of complex num-
bers. The sign should be ±1. The first data point is multiplied by the scale factor before
transformation. Other forms: SD.

List<complex> real ft(BaseList<complex> &vector,int sign =FT FORWARD,double scale =1)

is useful when only the real part of the transform is required. It is equivalent to (but
quicker than) real(ft(A)).

51

cmatrix ft(cmatrix matrix,sign =FT FORWARD,scale =1) performs a Fourier transform on
each row of the matrix. Note that this is relatively efficient since the Fourier coefficients
are calculated once and re-used for each row. Other forms: SD.

It is usually necessary to damp calculated Free Inductions decays by exponential apodis-
ation functions in order to have a finite linewidth (Fourier transformation of signals with an
infinite linewidth invariably leads to strange output):

void (rc)matrix exponential multiply((rc)matrix A,double rcons,double ccons) returns
the result of appliying an exponential damping to a 2D data set, A. rcons and ccons
are the damping factors for the row and column dimensions respectively. The damping
factor is expressed as the number of time constants covered by the FID i.e. a value of 3.0
means the damping factor at the tail of the FID will be exp(−3). A zero time-constant
implies no damping in the dimension.

void exponential multiply ip((rc)matrix A,double rcons,double ccons) is an in-place
version of the function i.e. A is replaced by its damped version.

6.12 “Meta Propagation”

The objects defined in Propgation.h encapsulate the messy business of calculating an indi-
vidual NMR signal. Even using these objects, complex problems involving, for example, block
diagonal Hamiltonians, symmetry factorisation of the Hamiltonian are still rather tedious.
The objects created in MetaPropagation.h allow simulations to be expressed at a yet higher
level, allowing complex problems to be expressed in a compact fashion.

In overview, a typical simulation will involve

1. Creating a HamiltonianStore object that defines what NMR interactions are active.

2. Creating an “operator generator” to create the Hamiltonians. This will normally be a
SpinOpGenerator, but different generators may be defined e.g. CrystalOpGenerator
for problems with periodic symmetry.

3. Creating a “blocked” Hamiltonian e.g. BlockedSpinningHamiltonian that defines the
(system) Hamiltonian. “Blocking” refers to any block-diagonal structure e.g. “mz”
blocking for free precession Hamiltonians, or “eigenvalue” blocking when the Hamil-
tonian is blocked by some additional symmetry. BlockedOperator objects store other
spin operators e.g. density matrices.

4. Creating a MetaPropagator object which generates propagators for a given system
Hamiltonian combined, if required, with RF (defined by Sequence).

5. Using a MetaSpectrum object or add MetaFID to generate the spectrum or FID.

Note how the “encapsulation” of the NMR simulation allows steps such as the creation of
the Hamiltonian to be “automated”. The price is loss of low-level control; you can only do
with the objects what they allow you to do.

Considering each of these steps in turn. . .

52

6.12.1 HamiltonianStore<T>

is used to store the values of NMR interactions. T can be either double (static problems) or
space T (spinning problems). It is created using

HamiltonianStore(M,N) creates an empty interaction list for M spins repeated N times.
N is 1 is omitted; other values of N are used for periodic problems.

HamiltonianStore(HamiltonianStore<space T> A, Euler Ω) creates a new HamiltonianStore

from A after rotating all interactions through Ω. A must be defined in terms of space T,
although the destination can be either a HamiltonianStore<double> or HamiltonianStore<space T>.

HamilonianStore understands periodic systems. All N spin systems are defined to be
identical, so the range of spin indices for shifts, δi and couplings di,j is 0 ≤ i < M , 0 ≤ j < MN .

Interactions are added / read using

set dipole(i,j,T d)and T& get dipole(i,j) sets or reads out the magnitude of the dipole
coupling (as a double or space T) between spins i and j (indexed from 0). The couplings
are always mutual, so it not possible (or necessary) to set the coupling between j and i

independently.

set jcoupling(i,j,T J)and T& get jcoupling(i,j) Ditto for J coupling.

set shift(i,T δ)and T& get shift(i) Sets / returns the chemical shift (Hz rather than
ppm) for spin i.

set quadrupole(i,T δ, order)and T& get quadrupole(i) Sets / returns the quadrupole cou-
pling for spin i. order is the order to which the quadrupole Hamiltonian is treated.
Currently this is limited to 1!

clear() removes all interactions.

verify(ostream&, double tol) returns true if the coupling network is properly periodic,
otherwise output on the supplied stream indicates couplings that are incompatible with
the periodic structure.

Interactions that are not defined or set to zero are ignored when Hamiltonians are created.
An “operator generator” is used to construct spin operators. Unlike the basic spin system

objects etc., these objects understand block structure, periodicity, and can interface into other
objects such as MetaPropagator and MetaSpectrum. The default generator is SpinOpGenerator,
which is constructed from

SpinOpGenerator(sys, N) creates an operator generator for a set of spins, repeated N times
for periodic systems. sys is any basespin system object and is used to create the
underlying spin operators.

SpinOpGenerator(sys, N, List<nuclei spec> blockingnucs) imposes an “mz” block struc-
ture. blockingnucs is a list of nuclei for which Fz is a good quantum number. Usually
this will correspond to any nucleus that is not being irradiated.

53

SpinOpGenerator(sys, N, char* label) is a simplification for the case when only one nu-
cleus is “blocked” e.g. SpinOpGenerator(sys,1,"13C").

Static and spinning Hamiltonians are stored in BlockedHamiltonian<OpGen> and BlockedSpinningHamiltonian<OpGen>

respectively, where OpGen is the type of an operator generator (defaults to SpinOpGenerator).
These are created using

BlockedHamiltonian(opgen,Hstore) where opgen is an operator generator, and Hstore is a
HamiltonianStore<double>.

BlockedSpinningHamiltonian(opgen,Hstore,rotor speed,rotor phase,RotorInfo) creates a spin-
ning Hamiltonian on this basis of a set of interactions (stored in a HamiltonianStore<space T>)
and a spinning specification: spin rate, rotor phase at t = 0 and rotor orientation (MAS
by default).

Density matrices, spin operators etc. are stored in the BlockedOperator type. These are
created using

BlockedOperator(opgen, opspec) where opgen is an operator generator and opspec is an
“operator specifier” which defines the spin operator. This is turn is created from
operator spec(n,char op) where n is a spin indexer e.g. operator spec(1,’x’) would
refer to I1x. Sum operators are created from operator spec(char* nuclabel,op) e.g.
operator spec("1H",’x’) corresponds to Fx for the 1H spins.

Note that the BlockedOperator type is effectively “closed”; unlike operators stored in lower
level structures such as cmatrix, it cannot be arbitrarily manipulated. Only a limited number
of operations are currently defined for BlockedOperator. It is essentially a means of packaging
a block diagonal operator in a single package with all the work being done on the individual
blocks.

For time-dependent problems, it is then necessary to create a MetaPropagator object to
generate propagators for specified time intervals. These are created from

MetaPropagator(H,dt) where H is any valid Hamiltonian type e.g. BlockedHamiltonian
and dt is the integration timestep for time-dependent Hamiltonians. This should be
omitted (or set to zero) for time-independent problems.

Propagators are calculated using propgen(BlockedMatrix<complex>& dest,t1,t2). SequencePropagator
should be used instead of MetaPropagator if time-dependent RF is required.

Frequency domain propagation is performed with MetaSpectrum<obj> or MetaSpectrumED<obj>
where obj is one of the Spectrum or SpectrumED objects from Propagation.h. These iterators,
which used in the same way as the basic Spectrum objects, are created using

MetaSpectrum(H,σ0,Q,spectrum obj) where H is any suitable time-independent Hamilto-
nian type e.g. BlockedHamiltonian and σ0 and Q are corresponding objects, e.g.
BlockedOperator, containing the initial density matrix and detection operator. The
optional spectrum obj provides a means of passing arguments into the basic iterator
objects since this argument is copied to create the necessary objects. For instance, γ-
integrating objects require the number of sampling points to be specified when the object

54

is created e.g. GammaPeriodicSpectrum(nobs). The default object constructor will be
used if this argument is not present.

MetaSpectrum(propgen,n,t1,t2,σ0,Q,spectrum obj) is used for time-dependent problems. n

propagators are calculated using one of the propagator-generator objects e.g. SequencePropagator
over the time interval t1 to t2.

The add MetaFID function is used for time-domain propagation. Note this is a function
rather than an object as all the input arguments are passed in one step.

add MetaFID(FID obj, List<complex>& FID, scale,H,σ0,Q) is used for time-independent
propagation. FID obj is one of the FID objects. A concrete object is passed so that any
arguments to the FID object can be supplied. Q can be omitted for matched detection-
excitation (Q = σ†0).

add MetaFID(FID obj, List<complex>& FID, scale,propgen,n,t1,t2,σ0,Q) is the time-dependent
equivalent.

7 Optimisation and Data fitting

Various functions for data fitting and functional minimisation are declared in optim.h. libcmatrix
does not provide functions itself for functional optimisation beyond a basic slow-and-steady
simplex optimisation, but does provide an interface to the MINUIT routines.

7.1 Data fitting

The fitdata function uses the Levenburg-Marquardt algorithm (adapted from Numerical
Recipes) for least-squares fitting of experimental data. Although least-squares fitting can be
treated as a particular case of functional optimisation, where the function being minimised is
the χ2 difference between the trial and calculated data, it is more efficient to take advantage
of the particular properties of the χ2 function. For some problems, however, e.g. when several
parameters are very strongly correlated, the Levenburg-Marquadt method is insufficiently
robust. In these situations simplex fitdata can be used.

The fitdata functions require “function objects” of the form:
Modified

class myfunction : public BaseFitFunction { Must be derived from BaseFitFunction
... Any private data

public:
void operator()(BaseList<double>& dest, const BaseList<double>& paras) const;

return trial function corresponding to parameters paras in dest
}

The advantage of using a function object rather than a function is that extra data can be
passed cleanly within the object itself.

The fitdata function itself takes the following arguments

double fitdata(covar,paras,funcobj,data,which,errs,noise,verbose,chistop,maxsteps)

55

The input parameters are

BaseList<double> paras are the initial values of the parameters. This vector is updated the
fitted parameters when the fitting is finished.

funcobj is the model function object

BaseList<double> data is the “experimental” data.

BaseList<size t> which is a vector specifying which parameters are to be adjusted. e.g. if
which is (0,2,3), then parameters 0, 2 and 3 will be fitted, while parameter 1 will be
fixed. Note that items are numbered as usual from 0. This scheme makes it easy to
change which parameters are being fitted without having to modify the model function.

BaseList<double> errs is a vector containing estimated errors for each of the parameters.
This is only used to set the “scale” for each parameter i.e. whether the parameter should
be adjusted by 1e6 or 1e-6, so the estimates need only be order of magnitude.

BaseList<double> σ or double σ sets the noise level for each point in the data set. The
least-squares function being minimised is

χ2 =
∑

i

(triali − datai)2

σ2
i

(26)

where σi is the error on data point i. In most circumstances, the noise level is constant
across the data set and so only a single value of σ need be specified. It is important
that estimate of σ is reasonable for the χ2 statistic to have any meaning. Generally the
fitting can be assumed to satisfactory is χ2 ≈ N at the minimum where N is the number
of data points, but this is clearly only meaningful if σ is correct. Similarly the estimated
errors of the parameters (returned in the covariance matrix) are dependent on σ being
correct.

int verbose =0 controls the amount of output from the routine; 0 being the minimum.

int chistop =0.0 sets the change of χ2 used as the stopping criterion. If χ2 changes by less
than this amount during an iteration, the fitting is assumed to have converged. If 0 is
passed, a value of 1e-4 times the number of data points is used as a default; this is only
valid if σ has been set correctly.

int maxsteps =1000 sets the maximum number of iterations. A Failed() exception is
thrown if maxsteps is exceeded.

On exit, fitdata returns the final value of χ2 and the covariance matrix, V , in covar. This
can be used to give error bounds on the parameters and correlations between them. The error
on parameter i is simply

√
Vii while the correlation coefficient between parameters i and j is

corij =
Vij√
ViiVjj

(27)

56

Again the error estimates are only meaningful if σ is correct. Note that covar only spans the
variable parameters; row i of covar corresponds to parameter which(i).

Data can also be fitted by simplex optimisation. simplex fitdata is used in the same
way as fitdata, cf. the testsimplex program. Unlike fitdata no exception is thrown if
the maximum number of steps of exceeded; simplex optimisation usually benefits from being
“restarted” a few times. When restarting, it is usually a good idea to reduce the error estimates
to prevent the search volume being expanded too far.

7.2 Functional minimisation

The simplex function can be used for undemanding functional optimisations. The input
arguments are essentially similar to those for fitdata and simplex fitdata.

Here the function object is of the form

class myfunction : public BaseMinFunction { Must be derived from BaseMinFunction
... Any private data

public:
double operator()(const BaseList<double>& paras, int when =0) const;

return function value for parameters paras
}

The when parameter is used by some minimisation routines, notably MINUIT to indicate at
what stage of the minimisation function is being called (see the MINUIT section for details).
Other methods leave this value set at zero.

double simplex(paras,funcobj,which,errs,verbose,stopval,maxsteps=50) returns the mini-
mum value of funcobj found, updating the initial values of the parameters stored in paras.
stopval is the change in the funcobj value below which the optimisation stops (this pa-
rameter is now obligatory). errs is used to set the volume of the simplex centered on
the initial parameter values.

More sophisticated functional optimisation can be done using the MINUIT routines. MINUIT
Modified

is now developed as as a C++ library and can be accessed directly (see example in test/testminuit.cc).
optim.h simply provides a function adaptor which takes a BaseMinFunction and adapts it to
the form expected by MINUIT23.

8 Miscellaneous

8.1 Random numbers and noise

The following functions used to return random numbers are declared in cmatrix utils.h

double random(double x) returns a random number between 0 and x.
23This simply involves transferring between the List type used in BaseMinFunction to the std::list ex-

pected by MINUIT.

57

double gauss(double σ =1.0) returns a random number from a normal distribution of
standard deviation σ.

void set seed(int seed) is used to set the “seed” value for the random number generator.
Once the seed is set to a particular value, the numbers generated will follow the same
sequence. set seed() without an argument will set the seed to a “random” value based
on the system clock. Because the clock only changes every second, calling set seed()

too frequently will reset the generator to exactly the same point!

It is important to note that libcmatrix sets the seed to the same value each time it starts.
Hence libcmatrix programs will always use the same sequence of noise values in each run
unless the seed changed.

8.2 Euler angles and Wigner rotation matrix elements

The functions for calculating Wigner rotation matrix elements, and the declaration of the
Euler structure are found in "wigner.h". This can be used independently of the rest of
libcmatrix. Euler is declared as

struct Euler {

double alpha;

double beta;

double gamma;

Euler(double alpha,double beta,double gamma);

};

Because Euler is simply a structure, its components can be accessed directly e.g. PAStoMF.beta=M PI/4.
The constructor allows compact initialisation e.g. Euler PAStoMF(0,0,0). Note that output
of an Euler structure (using << Ω) prints the angles in degrees although α, β and γ are always
stored and input in radians.

The Wigner elements are returned by

double d1(int m,int n,double β) returns d
(1)
mn(β)

double d2(int m,int n,double β) returns d
(2)
mn(β)

double d(int l,int m,int n,double β) returns d
(l)
mn(β). For l = 1, 2, the functions d1

and d2 are called, otherwise the element is calculated (code used without validation).

double D(int l,int m,int n,double α,double β,double γ) returns the full matrix el-
ements D

(l)
mn(α, β, γ), which are the products of the d() term and the wigner factor().

complex D(int l,int m,int n,double α,Euler Ω) returns the full matrix elements D
(l)
mn(Ω).

In the interests of efficiency, these functions should be avoided in favour of factorisation
into the reduced matrix element and a phase factor.

58

complex wigner factor(int m,int n,double α,double γ) returns the phase factor for
the full Wigner rotation matrix element: exp[−i(mα + nγ)]. This function is made
accessible to allow these elements to calculated consistently, since there is more than
one convention.

cmatrix D(l,Ω) returns the complete rank l rotation matrix. Useful if rotating several ten-
sors through the same angle.

double legendre(int n,double β) returns value of the Legendre polynomial of order n,
Pn(β) = d

(l)
n0(β). n = 0, 1, 2 are treated as special cases, otherwise the value of d

(l)
n0 is

calculated explicitly.

8.3 3D geometry

geometry.h defines the simple data types vector3 and spherical for storing 3D vectors and
position in spherical coordinates respectively.

The vector3 type is simply

struct vector3 {

double x,y,z;

vector3(double,double,double =0);

};

The components are accessed directly, e.g. A.x=5.0. The constructor allows initialisations of
the form vector3(x,y,z) or vector3(x,y) (where the z component is set to zero).

Apart from the obvious addition, subtraction and scaling operations, the following func-
tions are also defined

double vector.length() returns the magnitude of the vector, |v|.
void vector.rotate(Euler Ω) applies the rotation specified in terms of Euler angles to the

vector. Also exists as a new-object function rotate(vector,Ω).

void vector.rotate(double R[3][3]) applies a rotation specified as a 3×3 rotation matrix.
Also exists as a new-object function rotate(vector,R).

void rotation matrix(double R[3][3],Euler Ω) returns the 3 × 3 rotation matrix cor-
responding to rotation Ω. A simple double array is used to store the matrix.

double dot(vector3 v1,vector3 v2) returns the dot product v1 · v2

vector3 cross(vector3 v1,vector3 v2) returns the cross (outer) product v1 × v2.

double vector angle(vector3 v1,vector3 v2) returns the angle (in radians) between two
vectors.

When rotating a series of vectors through the same angle, it is much more efficient to first
calculate the rotation matrix and pass this to rotate rather than calling rotate with the
Euler angles.

The spherical type is simply

59

struct spherical {

double r,theta,phi;

spherical(double r,double theta,double phi =0);

};

spherical and vector3 are converted simply by creating (casting) one type from the
other e.g. spherical sphco(myvector); .

Modified

8.4 timer

timer (declared in timer.h) is a simple stopwatch. The timer starts from the construction
of the object, is read out (in seconds) using the () operator and can reset by the reset()

member function. e.g.

timer stopwatch; create and start stopwatch
. . . code to time
cout << "That took " << stopwatch() << " seconds";

The closely related wtimer object displays elapsed “wall clock” time rather than CPU
time.

8.5 Parallel computation with MPI

Currently undocumented: see test/testMPI.cc for an example.

8.6 Parameter input

ttyio.h declares a collection of functions intended to simplify the input of program parame-
ters.

int getint(char* prompt) displays the prompt string and reads the (newline) terminated
input from the user. If the resulting string cannot be read as an integer, the user is
reprompted. Note that the integer parsing stops at the first non-digit character i.e.
"5.9" and "5 hundred" will both be read, without complaint, as 5.

int getint(char* prompt,int default) as simple getint, but the default value is returned
if the user returns an empty string (i.e. presses Return).

int getint(char* prompt,int min,int max) as simple getint, but the response is only
accepted if it lies between min and max (inclusive). An InvalidParameter exception is
thrown if max<min.

int getint(char* prompt,int min,int max,int default) combines a default response with
a range. An InvalidParameter exception is thrown if default is not in the range min
to max.

float getfloat(char* prompt [,int min,int max [,float default])] behave as getint but
return floating point numbers. "5.9" and "5 hundred" will be returned as 5.9 and 5
respectively.

60

bool getlogical(char* prompt) returns false or true depending on whether the response
to the prompt was positive (1, or beginning with "y"), or negative (0, or beginning with
"n").

int getlogical(char* prompt,int default) as above, but with default (non-zero default
value means default result is 1).

int getoption(char* prompt,char* options) requires the response to start with one of the
letters of the options string. The result is the index of the response in the option string
i.e. 0 for first letter etc. This numbering of the options is consistent with enum which,
by default, numbers its members from 0. As an example:

enum output_type { ASCII, BINARY, MATLAB };

printf("A - ASCII\nB - Binary\nM- Matlab\n");

output_type format=output_type(getoption("Output format? ","ABM"));

which prompts the user to specify an output format after printing a menu of possible
responses with the character for each response clearly indicated.

int getoption(char* prompt,char* options,int default) as above, but with default re-
sponse.

void getstring(char* prompt,char* dest,int max,char* default =NULL) prompts the user
for a string which is returned in dest. max specifies the maximum number of characters
in dest. The default string is returned if the pointer is non-null and the user presses
return. Note that an empty string (or one consisting entirely of white space) is a valid
response.

Responding to a large number of questions each time the program is run is tedious, and
so it is useful to be able to specify the responses in the command line. The functions used to
implement this are identical to those above, with the addition of three arguments e.g.

getint(int argc,char* argv[],int& count,char* prompt) tries to read an integer from
argv[count] if count<argc. If this is not the case, the user is prompted for the response.
count is an argument counter which should initially be set to 1 and is incremented as
arguments are parsed.

For example, myprogram 3 - no output B gives the responses to the first five get questions.
"-" is used to denote the default response. The user will be asked the remaining questions,
if more than five responses are needed. If a command line response cannot be parsed, the
program exits with the non-zero error code BADINPUT. Similarly, if a file given in the command
line cannot be opened, the program aborts with an OPENFAILED error condition. Each response
read from the command line is printed (together with its prompt) on the standard output.
Hence the output contains the information necessary to re-run the calculation.

A program will typically start

61

int main(int argc,const char* argv[])

{
int count=1; Initialise counter
int nspins=getint(argc,argv,count,"Number of spins? ",2);

... Get number of spins (default 2).

These routines are not particularly elegant, but are simple to use. Consider using existing
public domain routines if something more sophisticated is required.
Miscellaneous handy functions

bool isreadable(const char* fname) returns true if the given file is readable, false oth-
erwise. This does not imply that the user necessarily is able to write to the file; a
directory would give a positive response.

const char* getbasename(const char* fname) returns (a pointer to) the “leafname” of a
filename. Hence getbasename(argv[0]) will returns the name of the program even if
is it being run via a command such as "./program".

9 Evolution

Changes that may involve modifications to user code are highlighted.

9.1 Changes from release 2

• The most significant change has been changing the storage of matrix objects for C-
like pointer-to-pointer to a “flat” FORTRAN-like vector. The improves the efficiency
of operations on larger matrices since the cache-misses on the pointer index table are
avoided. It also reduces the overhead for allocation and de-allocation of matrices, so
there is no significant efficiency advantage in using lists to store one-dimensional data.
This change should not be visible to user programs. The balance is less clear for smaller
matrices; some operations could run more slowly.

• Support for multidimensional matrices (MultiMatrix).

• The mathematical machinery has been rewritten in a cleaner fashion, making it easier
to re-use code for existing types to new forms of e.g. matrices, vectors. The downside
is an increased number of “layers” making compilation somewhat slower and some very
obscure error messages if things go wrong in compilation or at run time. When faced by
a screed of incomprehensible error messages, you should still be able to identify which
line of your program triggered the problem. Then look for some form of logic error e.g.
trying to copy a vector into a matrix, or a floating point matrix into an integer matrix
etc.

• Some interfacing to external numerical analysis libraries (e.g. ATLAS, ACML) is pro-
vided. These routines can give major efficiency improvements for operations such as
matrix multiplication on larger matrices. The “glue” defined in cmatrix external.h

62

ought to be useful for applying other BLAS/LAPACK-style functions to libcmatrix

matrices.

• The memory allocation for List and Matrix objects has been modified to make it
possible to create containers for objects without default constructors (as in the Standard
Library). Some changes to the ListList interface have been made as a result. The
ExplicitList type allows mixed lists to be constructed, removing the need for some
objects to have default constructors. Some objects, e.g. spin system must now have
arguments supplied when constructed.

• Function naming is aligning on Standard Library usage e.g. containers should be emptied
by calling the clear member function (rather than kill), empty should be used in
preference to test whether container objects are empty etc.

• The move towards function objects has been reinforced by the virtual elimination of
pointers to functions (in optim.h and cmatrix threads.h). Replacement by function
objects has removed the need for inelegant pointers-to-void for supplementary informa-
tion.

• The read simpson and write simpson allow the reading and writing of SIMPSON for-
mat files e.g. for display in simplot. The coherencematrix functions provide some
functionality present in SIMPSON which was missing in libcmatrix. The Matlab V5 file
format is now well supported.

• Additional support for Liouville space calculations and some support for Floquet tech-
niques.

• The propagation code has been revised and extended. xxxPropagator objects replace
StepxxxPropagator objects. Note that the former, as the name suggests, return the
propagator for a specified time interval, replacing the destination argument rather than
“propagating” it.

• “Higher order” functionality for defining pulse sequences, working with periodic systems,
block-diagonal problems etc.

9.2 The future

The core functionality of the library works nicely and seems to fill its goal of combining
the efficiency of a compiled language, the simplicity of Matlab programming, and the power
of C++. Some types and functions that have not proved so useful have been removed in
this release and this kind of experimentation followed by pruning is likely to continue at the
“fringes”.

The support for Liouville space calculations is rather limited (especially in comparison with
GAMMA). Although a lot can be done with the existing types and functions, this is certainly
an area for future work. Another interesting addition would be to package an existing (C)
library for sparse matrices in terms of libcmatrix data types. This would be especially
useful for Louiville space calculations. Otherwise there is little incentive to add further basic

63

+/- 0 1 2 n
0 0 1 2 n
1 1 1 2*
2 2 2* 2
n n n

Table 7: Dimensionality of results of addition or subtraction operations as a function of dimen-
sionality of arguments. Blank entry indicates incompatible combination. *one-dimensional
argument is interpreted as a matrix diagonal.

functionality e.g. additional numerical analysis routines, standard algorithms, since these can
increasingly be supplied via external libraries and routines.

A The algebra

A major change in the current release is the “abstraction” of basic mathematical operations
into a general algebra defined in basedefs.h. Rather than define operations on individual data
types, such as Matrix<T>, the different data types are tagged with information, such as the
dimensionality of the object, and an overall set of rules are applied to determine what function
should be applied. This makes it easy to create new data types, such as “view” objects, with
well-defined mathematical proporties; it would be very messy to create explicitly mathematical
operations for each new data type and all possible combinations of data types.

It is important to realise that “rules” of the algebra are interpreted at compile time based
on the properties of the data types involved. This means that there is no run-time overhead
for this abstraction, but does mean that there is no mechanism for incorporating helpful error
messages when things go wrong. The process relies heavily on templating and inlining, which
lengthens compile times and implies that programs compiled without any optimisation (e.g.
for debugging) will suffer from increased overheads.

Table 7 shows which object dimensionalities are compatible for addition and subtraction
operations. For instance, addition of a scalar (dimensionality zero) is always valid, with the
output having the same dimensions as the input. Other operations require the inputs to
have the structure e.g. two matrices with the same shape (otherwise a Mismatch exception
is thrown). Provided there is no ambiguity, one-dimensional objects can be interpreted as
simple vectors (without orientation) or matrix diagonals. Adding a 1D object to a 2D object
will create a 2D result. A NotSquare exception is thrown if the 2D input is not square and a
Mismatch exception is thrown if the length of the vector does not match the order of the 2D
object.

The same rules apply to in-place operations, += etc., new-object and supplied destination
forms, with the exception of that if the “target” matrix of the in-place function is undefined,
it is treated as a zero matrix of appropriate dimensions. An undefined input for the binary
additions generates an Undefined exception.

Table 7 shows the corresponding table for multiplication. Note the only only “scaling”
operations are currently defined for multidimensional operations. Multiplication of a matrix

64

* 0 1 2 n
0 0 1 2 n
1 1 1 1/2*
2 2 1/2* 2
n n

Table 8: Dimensionality of results of multiplication as a function of dimensionality of argu-
ments. *Interpretation of 1D argument depends on dimensionality of output: vector output
implies input must be vector, matrix output implies it is diagonal matrix.

n(A) n(B) n(C)
n 0 n
1 1 1
2 0 1*

Table 9: Permitted dimensionality for mla(A,B,C) operation. *One-dimensional argument
interpreted as matrix diagonal.

by a 1D object is unusual in the nature of the operation is deduced from the “output” e.g.
for in-place operations and supplied-destination with matrix output, it is multiplication by a
diagonal matrix. The output from the new-object form is undefined! An undefined “target”
matrix to in-place multiplication is treated as an identity matrix.

Other operations, including division, have simpler rules: either the input arguments have
exactly the same structure, in which case the operation is applied sequentially to corresponding
elements, or one argument is a scalar, in which case the output has the same structure as the
other argument and it formed by combining the constant argument with each element of the
input. N.B. it is generally more efficient to write a scaling division in terms of multiplication
i.e. A*=1/x rather than A/=x, but this is left to the user.

Points to watch

• When using supplied-destination functions, it is obviously necessary to ensure that the
output has the correct type for the input arguments, otherwise the compilation will fail
(somewhat obscurely).

• New-object functions create the following objects depending on the dimensionality of
the output: T (0), List<T> (1), Matrix<T> (2), MultiMatrix<T,n> (n).

B Speed comparison of different operations

Table 10 shows the result of time trialing different operations on 8 × 8 complex matrices.
Tests X–XI involve block matrices; A and B were each blocked into two 4× 4 matrices. Tests
XV–XVII involved List<complex> objects with an equivalent number of items (i.e. 64).

Points to note:

65

test operation coding PC
I matrix add A=B+C 2.0
II copy and add A=B; A+=C 3.0
III supplied-dest. add add(A,B,C) 0.9
IV matrix multiply A=B*C 22
V supplied-dest. multiply multiply(A,B,C) 25
VI multiply and add A+=2.0*C 4.4
VII multiply and add mla(A,double(2),C) 1.5
VIII multiply and add mla(A,complex(2),C) 2.4
X block copy and add BA=BB; BA+=BC 1.9
XI explicit block add add(BA(0),BB(0),BC(0)); add(BA(1),BB(1),BC(1)) 0.7
XII similarity transform unitary simtrans(A,B,C) 55
XIII inverse sim. trans. unitary isimtrans(A,B,C) 50
XIV block sim. trans. unitary simtrans(BA,BB,BC) 25
XV list add LA=LB+LC 3.4
XVI list copy and add LA=LB; LA+=LC 1.8
XVII supplied-dest. list add add(LA,LB,LC) 0.9

Table 10: Timings (in us) of different implementations of basic operations. Machine used 433
MHz Celeron-based PC (cygwin/g++), timetrial 150, timetriall 100 64.

• Comparing the equivalent matrix additions, I, II and III, the operation involving a
temporary matrix (I) is slightly more inefficient than the corresponding copy followed
by in-place addition (II). The supplied destination form, III, is much faster.

• The elimination of temporary variables is much less significant for time consuming oper-
ations, such as matrix multiplication, IV vs. V. It is worth remembering, however, that
the allocation of memory for square cmatrix is optimised, and where temporary objects
are allocated from free store, the differences will be more significant.

• The difference between VI and VII is again the elimination of a temporary. Using
a complex scaling factor (VIII vs. VII) approximately doubles the time required i.e.
overheads are relatively small.

• Despite the reduced number of operations (32 vs. 64), the block addition, X, is slightly
slower than the ordinary matrix addition, II. The explicit addition, XI, keeps overhead
to a minimum and is slightly faster than III.

• The advantage of blocking is much clearer with more demanding operations e.g. similarity
transformation, XVII vs. XV.

• XV–XVII are operations on lists with the same number of elements (64). The mem-
ory allocation is not optimised for List objects and so the performance of operations
involving temporaries (XV) is noticably worse.

66

rank external internal näıve
2 14 85 86
4 84 140 149
8 185 189 178

16 282 217 200
32 270 195 170
64 248 173 161

128 227 151 54
256 213 115 46
512 223 114 46

Table 11: Performance (in Mflops) of complex matrix multiplication as a function of matrix
size for three algorithms: external (ATLAS), normal “internal” libcmatrix method, näıve
implementation of matrix multiplication. From testops 200 M y EIB n y y 2 512 on 433
MHz Celeron-based PC.

Optimising performance is not a simple matter of minimising the number of instructions
required for a given operation. Particularly for large problems, the efficiency is determined by
the retrieval of data from memory, while “overhead” becomes proportionately more significant
for small problems. This is illustrated in Table 11 for matrix multiplication. The overall peaks
for moderately sized matrices (rank 16). As the matrices becomes larger than the processor
cache performance drops off sharply for the näıve implementation of matrix mutiplication.
The more sophisticated, but generic, libcmatrix routine maintains a much better level of
performance, while the processor-optimised ATLAS routine maintains a good efficiency except
for small matrices where its performance is quite poor. Since small matrices need to handled
efficiently too, libcmatrix switches between “external” and “internal” routines depending on
the matrix size. This switch point for different algorithms can be modified before compilation.
As a result, it is better not to compile with ATLAS support if dealing exclusively with small
problems (Hilbert space <∼ 10).

C Errors and exceptions

In general, the libcmatrix library uses exceptions to indicate error conditions. The exception
classes are all derived from the MatrixException class which can thus be used to catch
any error arising from the library. The full list of exceptions is shown in Table 12. The
MatrixException type include a character string which is used to describe the particular
error detected, although this will often only give the name of the function where the error was
first thrown. std::cerr << exception can be used to print this message on the standard error
output. Alternatively, the exceptions can be caught through the standard classes defined in
<stdexcept> (where the member function what() returns the error description).

The throwing of an exception generally corresponds to a programming error e.g. attempting
to add together matrices with different sizes. Under these circumstances it is best to abort the
calculation with an exception rather than quietly return an error code. For some functions,

67

Exception From Why?
ArgumentClash invalid argument Input argument cannot be used to store output.
BadIndex out of range Index out of range.
BadRank invalid argument Attempt to access inactive or impossible tensor rank.
Failed runtime error Algorithm failure due to unsuitable data e.g. singular matrix
InternalError logic error Failure of internal consistency check.

By definition, this indicates a bug in the library.
InvalidParameter invalid argument Parameter value passed to function is not valid.
Mismatch domain error Attempt to perform operation on matrices/lists with incompatible dimensions.
NotSquare domain error Attempt to perform operation only defined for square matrices.
Undefined domain error Attempt to perform operation on empty/uninitialised matrix.

Table 12: The exceptions generated by libcmatrix. These are all derived from the class
MatrixException and from one of the standard exception classes defined in <stdexcept>.
Note that the BadIndex exception will generally only be thrown if debugging has been enabled
cf. Sec. 4.3

however, the input is effectively supplied directly by the user e.g. names for input files etc. In
this case, it is more appropriate to return an error number if the operation fails rather than
aborting or requiring the programmer to have set up a catch handler for whenever the user
mistypes a filename.

The usual convention is used for error codes i.e. a zero return value indicates a successful
operation. Error descriptions can be printed with the functions:

const char* error name(int errval) returns a pointer to an error string. Note that an
InvalidParameter exception is thrown if the error number does not exist!

int error filter(int errval) is a convenience function which, given a function return value,
prints the error string (if any) and passes through the return value.

D Multi-threading

libcmatrix can be used in shared-memory parallel applications via multi-threading (“pthreads”).
Although light-weight, such approaches do not scale easily and additional precautions are re-
quired to ensure the executable code can be shared. libcmatrix now includes support for
distributed parallel programming via the MPI library. This is generally simpler to use and
should be used in preference to multi-threading.

The usual libcmatrix library is not entirely “safe” for use with multi-threaded applica-
tions. It is essential, therefore, to compile the entire programs with the correct options, in
particular the symbol REENTRANT must be defined, and to link with libcmatrix r.a, which
is the thread-safe version of the library.

In many situations, “parallelising” a program a simply a matter of splitting the main
computational loop between processors. In the context of solid state NMR, powder averaging is
the obvious candidate for such a division. libcmatrix contains some simple objects, declared

68

in the header file "cmatrix threads.h", which permit the multi-threading to be used in a
reasonably straightforward manner for breaking up loops between multiple processors. This is,
of course, only possible if the cycles of the loop are strictly independent, and is only beneficial
if the loop involves many cycles and is relatively time-consuming.

The key data type is the thread controller object. When this is created, a specified
number of threads of execution are created. These execute a “work object” whose job is to
process a given section of the loop. This must be an object (derived by BaseThreadFunction

Modified
whose () operator takes the form void obj(size t start,size t end,size t nthread). start
and end specify the section of the loop to be executed, nthread is an index running from 0
to N − 1 which identifies the thread. This index can be used to indicate where in an output
matrix the particular thread should write to. The per-thread result matrices would be added
together once the calculation is finished. This is significantly more effective than using a single
result matrix, which would need to be locked each time a thread needed to access it.

The ThreadFunction type can be used to create such an object from a traditional pointer
to a function of the type void func(start,end,nthread).

The threads are only destroyed when the thread controller object is destroyed and can
readily be “re-used”.

thread controller(N) creates n threads.

run(BaseThreadFunction& obj,size t steps,size t chunk) is used to run the multi-threaded
calculation. obj is the function object to be called, steps gives the number of steps in
the loop and chunk the number of steps allocated to a thread per calculation step, and
ptr is an optional generic pointer. chunk need not divide steps evenly and should be
chosen so that each calculation “chunk” takes a reasonable length of CPU time (say half
a minute). If the chunk size is too small, time is wasted in the synchronisation required
each time a new chunk is handed out (this overhead is very small, however, compared to
than, say, launching a new thread). If the number of chunks is too small, the calculation
risks being blocked by a particularly slow-running thread.

start(obj,steps,chunk) allows the main program to continue while the threaded calculation
is run. The wait() function must be called before any attempt is made to use the
results of the calculation to make sure that the calculation has finished. Contrast with
run where the main program “blocks” until the multi-threaded calculation is finished.

size t get num threads() returns the number of active threads, N , or 0 if the calculation
if not active24.

size t get max threads() returns the number of threads, N .

bool in parallel() returns true if inside a parallel section.

int get thread num() returns the thread number, 0 to N − 1, or −1 if the thread is not a
“worker” thread.

24In OpenMP, the active threads includes the “master” thread, so the return value outside a parallel section

is 1

69

It is, of course, vitally important that the “work function” is properly re-entrant. To
ensure this, it is important to understand which objects can be safely shared between threads
and which not.

Read/write safe objects can be shared between threads, including for write access i.e. write
operations are designed to prevent problems from simultaneous writes. No user-visible
libcmatrix objects fall into this category. Note that memory allocation is generally
shared between threads and so forces the use of locks. It is therefore doubly important
to avoid dynamic memory allocation within time critical sections.

Read safe objects can be shared for reading (but not writing). This applies to all objects
unless indicated. Some objects may cache values (look for mutable variables), but these
are protected in their thread-safe versions.

Unsafe objects should never be shared across threads. Typically such objects preserve “state”
from one call to the next e.g. iterators, and it wouldn’t normally make sense to try to
share such objects across threads. Other objects in this category are: the propagation
objects (StaticSpectrum, MetaSpectrum, PeriodicFID, etc.), some Propagator objects
e.g. SequencePropagator and the “powder” objects, PlanarZCW etc.

Stick to these rules and libcmatrix programs should run close to the processor limit i.e. the
speed should increase almost linearly with the number of processors.

70

	Introduction
	Using libcmatrix
	Combining cmatrix with other code

	General features
	Standard functions and arguments
	``undefined'' and non-dynamic objects

	The complex data type
	The Matrix<T> class
	Complex matrices
	Creation and deletion of cmatrix
	Information functions
	Relation to STL containers
	Mathematical operations
	General operations
	Advanced mathematical operations
	Input/output
	Real and diagonal matrices

	Other storage types
	The List<T> class
	The MultiMatrix<T,N> class
	The ListList<T> data type
	Blocked matrices

	NMR functions
	Using spin systems
	spinhalf_system

	Creating spin operators
	Product operators
	Tensor operators

	Spin state permutations
	NMR functions
	Spatial tensors
	Sample spinning
	Inhomogenous Hamiltonians
	Homogeneous (system) Hamiltonians

	Propagation
	Propagation under a homogeneous periodic Hamiltonian
	Propagation under inhomogeneous Hamiltonians

	Powder averaging
	Superoperators
	Sequence.h
	Creating the pulse sequence elements
	Creating the pulse sequence

	Data processing
	``Meta Propagation''
	HamiltonianStore<T>

	Optimisation and Data fitting
	Data fitting
	Functional minimisation

	Miscellaneous
	Random numbers and noise
	Euler angles and Wigner rotation matrix elements
	3D geometry
	timer
	Parallel computation with MPI
	Parameter input

	Evolution
	Changes from release 2
	The future

	The algebra
	Speed comparison of different operations
	Errors and exceptions
	Multi-threading

