Staff profile
Biography
Other roles
2022: PGR Director (Durham University)
2019: Chief Technical Officer (CTO), 0.5FTE, More Life (UK) Ltd: More Life is a health and well being company providing services under contract to NHS England and various local authorities. The services include weight management and smoking cessation among others. The company has been operating for 20+ year with 160+ staff.
Short Bio
Dorothy Monekosso (PhD) is Professor of Computer Science and Chief Technical Officer (CTO) at More Life UK Ltd. Dorothy holds a PhD (2000) in Spacecraft Engineering, a Master’s in Satellite Engineering from the Surrey Space Centre (University of Surrey) and Bachelor in Electronic Engineering. She began her career in space sector, developing on-board computers and control systems for spacecraft and satellites. Dorothy became interested in Artificial Intelligence during her PhD applying machine learning methods and techniques to spacecraft autonomy. On the basis of this work, she was awarded a Royal Academy of Engineering, Engineering Foresight Award. Her current research applies the same techniques to develop innovative healthcare technologies. In 2020, she was awarded an honorary fellowship of the British Computer Society for work in assistive and rehabilitation technologies.
Social Media
www.linkedin.com/in/prof-dorothy-monekosso
Projects
Insights - automated analysis using sentiment analysis
More Life & Durham - Personalising weight management programmes (Innovate UK)
Healthy Lifestyle Programmes | MoreLife UK (more-life.co.uk)
MRC - IAA "Technology Supported Rehabilitation Impact Evaluation Study" Virtual Physiotherapist - physiotherapy at home
MRC impact acceleration accounts (previously confidence in concept) – UKRI
https://www.virtualphysioproject.com/
Grow MedTech Virtual Physiotherapist could improve stroke recovery - Grow MedTech
Digital Twins in Health
Smart homes - Supporting independent living
- Activty recognition, behaviour modelling,
Supervision
If you're interested in undertaking a research project at PhD, Masters, or a 3rd/4th year undergraduate project under my supervision in assistive and rehabilitations technologies, human digital twins, applications of machine learning to healthcare technologies, and digital health please get in touch.
Research interests
- Behaviour Analytics
- Digital Twin Computing
- Anomaly detection
- Data analytics: applications of machine learning to decision support systems in health
- Digital health: wearables, assistive and rehabilitation technologies, medical image analysis, clinical decision support
- Smart Environments & Cities: supporting people to live independently
Esteem Indicators
- 2022: Royal Society Diversity Committee - member:
- 2021: BCS - British Computer Society, Fellows Technical Advisory Group (F-TAG): BCS Fellows Technical Advisory Group (F-TAG) - member
- 2020: World Economic Forum:
- 2020: Commissioner at Digital Futures Commission: Commissioner at the Digital Futures Commission - a research collaboration of unique organisations that invites innovators, policy makers, regulators, academics and civil society, to unlock digital innovation in the interests of children and young people.
- 2019: Expert Evaluator: R&I Projects Unit, Research Promotion Foundation, Cyprus
Central Finance and Contracting Agency, Riga, Latvia
National Science Centre, Warsaw, Poland
HORIZON2020 - 2019: Research Impact: Promoting the diversity of impacts that Knowledge Exchange and Commercialisation can deliver at the RE Connecting Capability Fund’s Technology & Talent Showcase at
- 2019: UKRI - Peer Review College / SIFT Panel Member: Future Leaders Fellowships SIFT Panel Member
Publications
Chapter in book
- Multi-robot Teams for Environmental MonitoringEspina, M. V., Grech, R., De Jager, D., Remagnino, P., Iocchi, L., Marchetti, L., Nardi, D., Monekosso, D., Nicolescu, M., & King, C. (2011). Multi-robot Teams for Environmental Monitoring. In P. Remagnino, D. Monekosso, & L. Jain (Eds.), INNOVATIONS IN DEFENCE SUPPORT SYSTEMS - 3: INTELLIGENT PARADIGMS IN SECURITY (pp. 183-209).
- The Analysis of Crowd Dynamics: From Observations to ModellingZhan, B., Remagnino, P., Monekosso, D., & Velastin, S. (2009). The Analysis of Crowd Dynamics: From Observations to Modelling. In C. Mumford & L. Jain (Eds.), COMPUTATIONAL INTELLIGENCE: COLLABORATION, FUSION AND EMERGENCE (pp. 441-472).
- Anomalous Behavior Detection: Supporting Independent LivingMonekosso, D. N., & Remagnino, P. (2009). Anomalous Behavior Detection: Supporting Independent Living. In D. Monekosso, P. Remagnino, & Y. Kuno (Eds.), Intelligent Environments: Methods, Algorithms and Applications (pp. 33-48). Springer. https://doi.org/10.1007/978-1-84800-346-0_3
- Intelligent Environments: Methods, Algorithms and ApplicationsMonekosso, D. N., Remagnino, P., & Kuno, Y. (2009). Intelligent Environments: Methods, Algorithms and Applications. In D. Monekosso, P. Remagnino, & Y. Kuno (Eds.), Intelligent Environments: Methods, Algorithms and Applications (pp. 1-11). https://doi.org/10.1007/978-1-84800-346-0_1
- Augmenting Professional Training, an Ambient Intelligence ApproachZhan, B., Monekosso, D. N., Remagnino, P., Velastin, S. A., & Rush, S. (2009). Augmenting Professional Training, an Ambient Intelligence Approach. In D. Monekosso, P. Remagnino, & Y. Kuno (Eds.), Intelligent Environments: Methods, Algorithms and Applications (pp. 105-121). Springer. https://doi.org/10.1007/978-1-84800-346-0_7
Conference Paper
- Usability and safety for a virtual physiotherapy rehabilitation system: a pilot studyStephens, C. A., & Monekosso, D. (2024). Usability and safety for a virtual physiotherapy rehabilitation system: a pilot study. In PETRA ’24: Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments (pp. 510-514). Association for Computing Machinery. https://doi.org/10.1145/3652037.3663911
- Advanced VR Calibration for Upper Limb Rehabilitation: Making Immersive Environments AccessibleHerrera, V., Reyes-Guzmán, A., Vallejo, D., Castro-Schez, J., Monekosso, D., Carlos, G.-M., & Albusac, J. (2024). Advanced VR Calibration for Upper Limb Rehabilitation: Making Immersive Environments Accessible. In Proceedings of the 26th International Conference on Enterprise Information Systems (pp. 378-389). SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0012624600003690
- Latent Bernoulli AutoencoderFajtl, J., Argyriou, V., Monekosso, D., & Remagnino, P. (2020). Latent Bernoulli Autoencoder. In H. Daume & A. Singh (Eds.), Proceedings of Machine Learning Research.
- Skin Identification Using Deep Convolutional Neural NetworkOghaz, M. M. D., Argyriou, V., Monekosso, D., & Remagnino, P. (2020). Skin Identification Using Deep Convolutional Neural Network. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, D. Ushizima, S. Chai, S. Sueda, X. Lin, A. Lu, D. Thalmann, C. Wang, & P. Xu (Eds.), Lecture Notes in Computer Science (pp. 181-193). https://doi.org/10.1007/978-3-030-33720-9%5C_14
- Single Image Ear Recognition Using Wavelet-Based Multi-Band PCAZarachoff, M., Sheikh-Akbari, A., & Monekosso, D. (2019). Single Image Ear Recognition Using Wavelet-Based Multi-Band PCA. In European Signal Processing Conference.
- Summarizing Videos with AttentionFajtl, J., Sokeh, H. S., Argyriou, V., Monekosso, D., & Remagnino, P. (2019). Summarizing Videos with Attention. In G. Carneiro & S. You (Eds.), Lecture Notes in Computer Science (pp. 39-54). https://doi.org/10.1007/978-3-030-21074-8%5C_4
- Automatic recognition of physical exercises performed by stroke survivors to improve remote rehabilitationSchez-Sobrino, S., Monekosso, D. N., Remagnino, P., Vallejo, D., & Glez-Morcillo, C. (2019). Automatic recognition of physical exercises performed by stroke survivors to improve remote rehabilitation. Presented at 2019 INTERNATIONAL CONFERENCE ON MULTIMEDIA ANALYSIS AND PATTERN RECOGNITION (MAPR) IEEE; Vietnamese Assoc Pattern Recognit; VNU HCMC, Univ Informat Technol, Multimedia Commun Lab; VAST, Inst Informat Technol; HUST, MICA, Int Res Inst; ROSEN Grp; TMA Solu.
- Superframes, A Temporal Video SegmentationSokeh, H. S., Argyriou, V., Monekosso, D., & Remagnino, P. (2018). Superframes, A Temporal Video Segmentation. In International Conference on Pattern Recognition (pp. 566-571).
- DEEP RESIDUAL NETWORK WITH SUBCLASS DISCRIMINANT ANALYSIS FOR CROWD BEHAVIOR RECOGNITIONMandal, B., Fajtl, J., Argyriou, V., Monekosso, D., & Remagnino, P. (2018). DEEP RESIDUAL NETWORK WITH SUBCLASS DISCRIMINANT ANALYSIS FOR CROWD BEHAVIOR RECOGNITION. In IEEE International Conference on Image Processing ICIP (pp. 938-942).
- 2D Multi-Band PCA and its Application for Ear RecognitionZarachoff, M., Sheikh-Akbari, A., & Monekosso, D. (2018). 2D Multi-Band PCA and its Application for Ear Recognition. In IEEE International Conference on Imaging Systems and Techniques (pp. 324-328).
- AMNet: Memorability Estimation with AttentionFajtl, J., Argyriou, V., Monekosso, D., & Remagnino, P. (2018). AMNet: Memorability Estimation with Attention. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 6363-6372). https://doi.org/10.1109/cvpr.2018.00666
- Application of Single Image Super-Resolution in Human Ear Recognition Using EigenvaluesZarachoff, M., Sheikh-Akbari, A., & Monekosso, D. (2018). Application of Single Image Super-Resolution in Human Ear Recognition Using Eigenvalues. In IEEE International Conference on Imaging Systems and Techniques (pp. 286-291).
- Fuzzy-Rough based Decision System for Gait adopting Instance SelectionJhawar, A., Chan, C. S., Monekosso, D., & Remagnino, P. (2016). Fuzzy-Rough based Decision System for Gait adopting Instance Selection. In IEEE International Fuzzy Systems Conference Proceedings (pp. 1127-1133).
- Telemetry assisted frame registration and background subtraction in low-altitude UAV videosTzanidou, G., Climent-Perez, P., Hummel, G., Schmitt, M., Stuetz, P., Monekosso, D. N., & Remagnino, P. (2015). Telemetry assisted frame registration and background subtraction in low-altitude UAV videos. Presented at 2015 12TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS) IEEE Signal Proc Soc; IEEE Comp Soc; Fraunhofer Inst Optronics, Syst Technol \& Image Exploitation; Karlsruhe Inst Technol.
- Detecting Events in Crowded Scenes using Tracklet PlotsCliment-Perez, P., Mauduit, A., Monekosso, D. N., & Remagnino, P. (2014). Detecting Events in Crowded Scenes using Tracklet Plots (S. Battiato & J. Braz, Eds.).
- Telemetry-Based Search Window Correction for Airborne TrackingCliment-Perez, P., Lazaridis, G., Hummel, G., Russ, M., Monekosso, D. N., & Remagnino, P. (2014). Telemetry-Based Search Window Correction for Airborne Tracking. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. McMahan, J. Jerald, H. Zhang, S. Drucker, C. Kambhamettu, M. ElChoubassi, Z. Deng, & M. Carlson (Eds.), Lecture Notes in Computer Science (pp. 457-466).
- Multi-view event detection in crowded scenes using tracklet plotsCliment-Perez, P., Monekosso, D. N., & Remagnino, P. (2014). Multi-view event detection in crowded scenes using tracklet plots. In International Conference on Pattern Recognition (pp. 4370-4375). https://doi.org/10.1109/icpr.2014.748
- Robot Teams: Sharing Visual MemoriesGrech, R., Florez-Revuelta, F., Monekosso, D. N., & Remagnino, P. (2014). Robot Teams: Sharing Visual Memories. In M. Hsieh & G. Chirikjian (Eds.), Springer Tracts in Advanced Robotics (pp. 369-381). https://doi.org/10.1007/978-3-642-55146-8%5C_26
- The Visual Object Tracking VOT2013 challenge resultsKristan, M., Pflugfelder, R., Leonardis, A., Matas, J., Porikli, F., Cehovin, L., Nebehay, G., Fernandez, G., Vojir, T., Gatt, A., Khajenezhad, A., Salahledin, A., Soltani-Farani, A., Zarezade, A., Petrosino, A., Milton, A., Bozorgtabar, B., Li, B., Chan, C. S., … Niu, Z. (2013). The Visual Object Tracking VOT2013 challenge results. Presented at 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW) IEEE; CVF; IEEE Comp Soc; APRS; Australiasn Natl Univ; NICTA; FACE++; Natl Robot Engn Ctr; Google; Disney Res; nVIDIA; Raytheon BBN Technologies; Facebook; Adobe; Kitware; OMRON; SRI. https://doi.org/10.1109/iccvw.2013.20
- Reactive Coordination and Adaptive Lattice Formation in Mobile Robotic Surveillance SwarmsMullen, R. J., Monekosso, D., Barman, S., & Remagnino, P. (2013). Reactive Coordination and Adaptive Lattice Formation in Mobile Robotic Surveillance Swarms. In A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. Hsieh, L. Parker, & K. Stoy (Eds.), Springer Tracts in Advanced Robotics.
- The ``Good'' Brother: Monitoring People Activity in Private SpacesPadilla-Lopez, J. R., Florez-Revuelta, F., Monekosso, D. N., & Remagnino, P. (2012). The ``Good’’ Brother: Monitoring People Activity in Private Spaces. In S. Omatu, J. Santana, S. Gonzalez, J. Molina, A. Bernardos, & J. Rodriguez (Eds.), Advances in Intelligent and Soft Computing.
- A Vision-Based System for Object Identification and Information Retrieval in a Smart HomeGrech, R., Monekosso, D., de Jager, D., & Remagnino, P. (2010). A Vision-Based System for Object Identification and Information Retrieval in a Smart Home. In B. DeRuyter, R. Wichert, D. Keyson, P. Markopoulos, N. Streitz, M. Divitini, N. Georgantas, & A. Gomez (Eds.), Lecture Notes in Computer Science.
- A NOVEL SEGMENTATION METHOD FOR CROWDED SCENESBloisi, D., Iocchi, L., Monekosso, D. N., & Remagnino, P. (2009). A NOVEL SEGMENTATION METHOD FOR CROWDED SCENES. Presented at VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2 Inst Syst \& Technologies Informat, Control \& Commun; ACM SIGGRAPH.
- Synthetic Training Data Generation for ADL ModelingMonekosso, D. N., & Remagnino, P. (2009). Synthetic Training Data Generation for ADL Modeling. In M. Schneider, A. Kroner, J. Alvarado, A. Higuera, J. Augusto, D. Cook, V. Ikonen, P. Cech, P. Mikulecky, A. Kameas, & V. Callaghan (Eds.), Ambient Intelligence and Smart Environments (pp. 137-144). https://doi.org/10.3233/978-1-60750-056-8-137
- An Adaptive Tracker for Assisted LivingBloisi, D., Iocchi, L., Marchetti, L., Monekosso, D. N., & Remagnino, P. (2009). An Adaptive Tracker for Assisted Living. Presented at AVSS: 2009 6TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE IEEE; IEEE Comp Soc; IEEE Signal Proc Soc. https://doi.org/10.1109/avss.2009.96
- A Multi-agent Architecture for Multi-robot SurveillanceVallejo, D., Remagnino, P., Monekosso, D. N., Jimenez, L., & Gonzalez, C. (2009). A Multi-agent Architecture for Multi-robot Surveillance. In N. Nguyen, R. Kowalczyk, & S. Chen (Eds.), Lecture Notes in Artificial Intelligence.
- Synthetic Training Data Generation for Activity Monitoring and Behavior AnalysisMonekosso, D., & Remagnino, P. (2009). Synthetic Training Data Generation for Activity Monitoring and Behavior Analysis. In M. Tscheligi, B. DeRuyter, P. Markopoulus, R. Wichert, T. Mirlacher, A. Meschtscherjakov, & W. Reitberger (Eds.), Lecture Notes in Computer Science.
- Artificial Ants to Extract Leaf Outlines and Primary Venation PatternsMullen, R. J., Monekosso, D., Barman, S., Remagnino, P., & Wilkin, P. (2008). Artificial Ants to Extract Leaf Outlines and Primary Venation Patterns. In M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stutzle, & A. Winfield (Eds.), Lecture Notes in Computer Science.
- Detecting Activities for Assisted LivingMonekosso, D., & Remagnino, P. (2008). Detecting Activities for Assisted Living. In M. Muhlhauser, A. Ferscha, & E. Aitenbichler (Eds.), Communications in Computer and Information Science (pp. 228-237). https://doi.org/10.1007/978-3-540-85379-4%5C_28
- A Hierarchical Model-Based System for Discovering Atypical BehaviorMonekosso, D. N. (2008). A Hierarchical Model-Based System for Discovering Atypical Behavior. Presented at 2008 THIRD INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT, VOLS 1 AND 2 IEEE.
Journal Article
- Creating adapted environments: enhancing accessibility in virtual reality for upper limb rehabilitation through automated element adjustmentHerrera, V., Albusac, J., Castro-Schez, J. J., González-Morcillo, C., Monekosso, D. N., Pacheco, S., Perales, R., & de los Reyes-Guzmán, A. (2025). Creating adapted environments: enhancing accessibility in virtual reality for upper limb rehabilitation through automated element adjustment. Virtual Reality, 29, Article 28. https://doi.org/10.1007/s10055-024-01078-w
- Innovative haptic-based system for upper limb rehabilitation in visually impaired individuals: a multilayer approachAlbusac, J., Herrera, V., Schez-Sobrino, S., Grande, R., Vallejo, D., & Monekosso, D. (2024). Innovative haptic-based system for upper limb rehabilitation in visually impaired individuals: a multilayer approach. Multimedia Tools and Applications, 83(21), 60537-60563. https://doi.org/10.1007/s11042-023-17892-4
- Rehab-Immersive: A framework to support the development of virtual reality applications in upper limb rehabilitationHerrera, V., Vallejo, D., Castro-Schez, J. J., Monekosso, D. N., de los Reyes, A., Glez-Morcillo, C., & Albusac, J. (2023). Rehab-Immersive: A framework to support the development of virtual reality applications in upper limb rehabilitation. SoftwareX, 23, Article 101412. https://doi.org/10.1016/j.softx.2023.101412
- Health-5G: A Mixed Reality-Based System for Remote Medical Assistance in Emergency SituationsGarcía, F. M., Moraleda, R., Schez-Sobrino, S., Monekosso, D. N., Vallejo, D., & Glez-Morcillo, C. (2023). Health-5G: A Mixed Reality-Based System for Remote Medical Assistance in Emergency Situations. IEEE Access, 11. https://doi.org/10.1109/ACCESS.2023.3285420
- Chainlet-Based Ear Recognition Using Image Multi-Banding and Support Vector MachineZarachoff, M. M., Sheikh-Akbari, A., & Monekosso, D. (2022). Chainlet-Based Ear Recognition Using Image Multi-Banding and Support Vector Machine. Applied Sciences, 12(4), Article 2033. https://doi.org/10.3390/app12042033
- A Fuzzy Recommendation System for the Automatic Personalization of Physical Rehabilitation Exercises in Stroke PatientsGmez-Portes, C., Jesus Castro-Schez, J., Albusac, J., Monekosso, D. N., & Vallejo, D. (2021). A Fuzzy Recommendation System for the Automatic Personalization of Physical Rehabilitation Exercises in Stroke Patients. MATHEMATICS, 9(12), Article 1427. https://doi.org/10.3390/math9121427
- A Distributed Gamified System Based on Automatic Assessment of Physical Exercises to Promote Remote Physical RehabilitationSchez-Sobrino, S., Vallejo, D., Monekosso, D., Glez-Morcillo, C., & Remagnino, P. (2020). A Distributed Gamified System Based on Automatic Assessment of Physical Exercises to Promote Remote Physical Rehabilitation. IEEE ACCESS, 8, 91424-91434. https://doi.org/10.1109/access.2020.2995119
- Weakly supervised activity analysis with spatio-temporal localisationGu, F., Sridhar, M., Cohn, A., Hogg, D., Florez-Revuelta, F., Monekosso, D., & Remagnino, P. (2016). Weakly supervised activity analysis with spatio-temporal localisation. Neurocomputing, 216, 778-789. https://doi.org/10.1016/j.neucom.2016.08.032
- Guest Editorial Special Issue on Ambient-Assisted Living: Sensors, Methods, and ApplicationsMonekosso, D. N., Florez-Revuelta, F., & Remagnino, P. (2015). Guest Editorial Special Issue on Ambient-Assisted Living: Sensors, Methods, and Applications. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 45(5, SI), 545-549. https://doi.org/10.1109/thms.2015.2458019
- Marginalised Stacked Denoising Autoencoders for Robust Representation of Real-Time Multi-View Action RecognitionGu, F., Florez-Revuelta, F., Monekosso, D., & Remagnino, P. (2015). Marginalised Stacked Denoising Autoencoders for Robust Representation of Real-Time Multi-View Action Recognition. SENSORS, 15(7), 17209-17231. https://doi.org/10.3390/s150717209
- Ambient Assisted LivingMonekosso, D., Florez-Revuelta, F., & Remagnino, P. (2015). Ambient Assisted Living. IEEE INTELLIGENT SYSTEMS, 30(4), 2-6. https://doi.org/10.1109/mis.2015.63
- Refined particle swarm intelligence method for abrupt motion trackingLim, M. K., Chan, C. S., Monekosso, D., & Remagnino, P. (2014). Refined particle swarm intelligence method for abrupt motion tracking. Information Sciences, 283, 267-287. https://doi.org/10.1016/j.ins.2014.01.003
- Detection of salient regions in crowded scenesLim, M., Chan, C., Monekosso, D., & Remagnino, P. (2014). Detection of salient regions in crowded scenes. Electronics Letters, 50(5), 363-364. https://doi.org/10.1049/el.2013.3993
- A particle swarm optimisation algorithm with interactive swarms for tracking multiple targetsThida, M., Eng, H.-L., Monekosso, D. N., & Remagnino, P. (2013). A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets. APPLIED SOFT COMPUTING, 13(6), 3106-3117. https://doi.org/10.1016/j.asoc.2012.05.019
- Data reconciliation in a smart home sensor networkMonekosso, D. N., & Remagnino, P. (2013). Data reconciliation in a smart home sensor network. EXPERT SYSTEMS WITH APPLICATIONS, 40(8), 3248-3255. https://doi.org/10.1016/j.eswa.2012.12.037
- Ant algorithms for image feature extractionMullen, R. J., Monekosso, D. N., & Remagnino, P. (2013). Ant algorithms for image feature extraction. EXPERT SYSTEMS WITH APPLICATIONS, 40(11), 4315-4332. https://doi.org/10.1016/j.eswa.2013.01.020
- Building visual memories of video streamsGrech, R., Monekosso, D., & Remagnino, P. (2012). Building visual memories of video streams. Electronics Letters, 48(9), 487-U36. https://doi.org/10.1049/el.2011.3926
- Behavior Analysis for Assisted LivingMonekosso, D. N., & Remagnino, P. (2010). Behavior Analysis for Assisted Living. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 7(4, SI), 879-886. https://doi.org/10.1109/tase.2010.2049840
- Introducing Automation and Engineering for Ambient IntelligenceRemagnino, P., Monekosso, D. N., Kuno, Y., Trivedi, M. M., & Eng, H.-L. (2009). Introducing Automation and Engineering for Ambient Intelligence. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 6(4), 573-576. https://doi.org/10.1109/tase.2009.2022976
- A review of ant algorithmsMullen, R., Monekosso, D., Barman, S., & Remagnino, P. (2009). A review of ant algorithms. EXPERT SYSTEMS WITH APPLICATIONS, 36(6), 9608-9617. https://doi.org/10.1016/j.eswa.2009.01.020
- Measuring Retinal Vessel Tortuosity in 10-Year-Old Children: Validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) ProgramOwen, C. G., Rudnicka, A. R., Mullen, R., Barman, S. A., Monekosso, D., Whincup, P. H., Ng, J., & Paterson, C. (2009). Measuring Retinal Vessel Tortuosity in 10-Year-Old Children: Validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) Program. INVESTIGATIVE OPHTHALMOLOGY \& VISUAL SCIENCE, 50(5), 2004-2010. https://doi.org/10.1167/iovs.08-3018
- Crowd analysis: a surveyZhan, B., Monekosso, D. N., Remagnino, P., Velastin, S. A., & Xu, L.-Q. (2008). Crowd analysis: a survey. MACHINE VISION AND APPLICATIONS, 19(5-6), 345-357. https://doi.org/10.1007/s00138-008-0132-4