Staff profile
Dr Guy Paxman
Assistant Professor (Research)
Affiliation | Telephone |
---|---|
Assistant Professor (Research) in the Department of Geography | +44 (0) 191 33 41925 |
Biography
- 2022 – Present: Research Fellow, Durham University, UK
- 2019 – 2022: Postdoctoral Research Scientist, Lamont-Doherty Earth Observatory, New York, USA
- 2015 – 2019: Ph.D., Durham University, UK
- 2011 – 2015: MEarthSci - Earth Sciences, University of Oxford, UK
Research Groups
- Sea Level, Ice and Climate
Research Overview
I am a polar geophysicist and geomorphologist with a particular interest in the long-term evolution of Earth's ice sheets and their sensitivity to climate change. My research focuses on the interactions between solid Earth processes, topography, and ice sheet dynamics, particularly Greenland and Antarctica. This involves analysis of large geophysical and geological datasets, including radar-derived ice thickness and bed topography, gravity and magnetic anomalies, crustal and lithospheric properties, offshore sediment records, and satellite remote sensing, alongside numerical modelling and machine learning techniques.
The focus of my Ph.D. was the reconstruction of palaeotopography in Antarctica over multi-million year time scales, and the impacts of landscape evolution on ice-sheet behaviour and stability over the course of Antarctica's glacial history. Since then, I have worked on a US National Science Foundation (NSF) funded project to predict coastal responses to a changing Greenland Ice Sheet. This included constraining past ice extent and behaviour from geomorphological analysis of subglacial landscapes in the Greenlandic interior, improving models of solid Earth deformation across a range of timescales (i.e., elastic and viscous responses to ice sheet (un)loading), and developing projections of relative sea level and bathymetric change around the Greenland coastline in response to future warming scenarios.
In my current research at Durham as a Leverhulme Early Career Research Fellow I am developing automated techniques to map and classify subglacial geomorphological features in Antarctica and Greenland. I have also used supervised machine-learning routines such as random forest to quantify and intepret spatial patterns within large and hitherto under-utilised airborne geophysical datasets (e.g., radar, gravity, and magnetics) and help better understand the nature of the subglacial environment. The overarching aim of this project is to link landscape features to the process(es) responsible for their formation, and in turn better understand ice-sheet extent and behaviour through time.
Publications
Journal Article
- Carter, C. M., Bentley, M. J., Jamieson, S. S. R., Paxman, G. J. G., Jordan, T. A., Bodart, J. A., Ross, N., & Napoleoni, F. (2024). Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow. The Cryosphere, 18(5), 2277-2296. https://doi.org/10.5194/tc-18-2277-2024
- MacGregor, J. A., Colgan, W. T., Paxman, G. J. G., Tinto, K. J., Csathó, B., Darbyshire, F. A., Fahnestock, M. A., Kokfelt, T. F., MacKie, E. J., Morlighem, M., & Sergienko, O. V. (2024). Geologic Provinces Beneath the Greenland Ice Sheet Constrained by Geophysical Data Synthesis. Geophysical Research Letters, 51(8), Article e2023GL107357. https://doi.org/10.1029/2023gl107357
- Paxman, G. J. G., Jamieson, S. S. R., Dolan, A. M., & Bentley, M. J. (2024). Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climates. The Cryosphere, 18(3), 1467-1493. https://doi.org/10.5194/tc-18-1467-2024
- Paxman, G. J. G. (2023). Patterns of valley incision beneath the Greenland Ice Sheet revealed using automated mapping and classification. Geomorphology, 436(September), Article 108778. https://doi.org/10.1016/j.geomorph.2023.108778
- Jamieson, S. S. R., Ross, N., Paxman, G. J. G., Clubb, F. J., Young, D. A., Yan, S., Greenbaum, J., Blankenship, D. D., & Siegert, M. J. (2023). An ancient river landscape preserved beneath the East Antarctic Ice Sheet. Nature Communications, 14(1), Article 6507. https://doi.org/10.1038/s41467-023-42152-2
- Paxman, G., Lau, H., Austermann, J., Holtzman, B., & Havlin, C. (2023). Inference of the timescale-dependent apparent viscosity structure in the upper mantle beneath Greenland. AGU advances, 4(2), 1-22. https://doi.org/10.1029/2022av000751
- Stokes, C. R., Abram, N. J., Bentley, M. J., Edwards, T. L., England, M. H., Foppert, A., Jamieson, S. S., Jones, R. S., King, M. A., Lenaerts, J. T., Medley, B., Miles, B. W., Paxman, G. J., Ritz, C., van de Flierdt, T., & Whitehouse, P. (2022). Response of the East Antarctic Sheet to Past and Future Climate Change. Nature, 608, 275-286. https://doi.org/10.1038/s41586-022-04946-0
- Paxman, G. J., Austermann, J., & Hollyday, A. (2022). Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets. Scientific Reports, 12(1), Article 11399. https://doi.org/10.1038/s41598-022-15440-y
- Paxman, G. J., Tinto, K. J., & Austermann, J. (2021). Neogene‐Quaternary Uplift and Landscape Evolution in Northern Greenland Recorded by Subglacial Valley Morphology. Journal of Geophysical Research: Earth Surface, 126(12), Article e2021JF006395. https://doi.org/10.1029/2021jf006395
- Paxman, G. J., Austermann, J., & Tinto, K. J. (2021). A fault-bounded palaeo-lake basin preserved beneath the Greenland Ice Sheet. Earth and Planetary Science Letters, 553, Article 116647. https://doi.org/10.1016/j.epsl.2020.116647
- Paxman, G. J. (2021). Antarctic palaeotopography. Memoirs, 56, https://doi.org/10.1144/m56-2020-7
- Napoleoni, F., Jamieson, S., Ross, N., Bentley, M., Rivera, A., Smith, A., Siegert, M., Paxman, G., Gacitua, G., Uribe, J., Zamora, R., Brisbourne, A., & Vaughan, D. (2020). Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica. The Cryosphere, 14, 4507-4524. https://doi.org/10.5194/tc-14-4507-2020
- Paxman, G., Gasson, E., Jamieson, S., Bentley, M., & Ferraccioli, F. (2020). Long-term increase in Antarctic Ice Sheet vulnerability driven by bed topography evolution. Geophysical Research Letters, 47(20), Article e2020GL090003. https://doi.org/10.1029/2020gl090003
- Paxman, G., Jamieson, S., Hochmuth, K., Gohl, K., Bentley, M., Leitchenkov, G., & Ferraccioli, F. (2019). Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 535, Article 109346. https://doi.org/10.1016/j.palaeo.2019.109346
- Paxman, G., Jamieson, S., Ferraccioli, F., Jordan, T., Bentley, M., Ross, N., Forsberg, R., Matsuoka, K., Steinhage, D., Eagles, G., & Casal, T. (2019). Subglacial geology and geomorphology of the Pensacola-Pole Basin, East Antarctica. Geochemistry, Geophysics, Geosystems, 20(6), 2786-2807. https://doi.org/10.1029/2018gc008126
- Paxman, G., Jamieson, S., Ferraccioli, F., Bentley, M., Ross, N., Watts, A., Leitchenkov, G., Armadillo, E., & Young, D. (2019). The role of lithospheric flexure in the landscape evolution of the Wilkes Subglacial Basin and Transantarctic Mountains, East Antarctica. Journal of Geophysical Research: Earth Surface, 124(3), 812-829. https://doi.org/10.1029/2018jf004705
- Paxman, G., Jamieson, S., Ferraccioli, F., Bentley, M., Ross, N., Armadillo, E., Gasson, E., Leitchenkov, G., & DeConto, R. (2018). Bedrock erosion surfaces record former East Antarctic Ice Sheet extent. Geophysical Research Letters, 45(9), 4114-4123. https://doi.org/10.1029/2018gl077268
- Paxman, G., Jamieson, S., Ferraccioli, F., Bentley, M., Forsberg, R., Ross, N., Watts, A., Corr, H., & Jordan, T. (2017). Uplift and tilting of the Shackleton Range in East Antarctica driven by glacial erosion and normal faulting. Journal of Geophysical Research. Solid Earth, 122(3), 2390-2408. https://doi.org/10.1002/2016jb013841
- Paxman, G., Gregory, B., Payne, S., Forshaw, J., Brady, M., Khan, M., Avadanii, D., Wardle, G., Wills, J., Kovin, O., Naumova, O., Osovetskiy, B., & Naumov, V. (2015). Placer Gold Composition and Provenance Studies in the Kuznetskiy Alatau and Western Sayan, South-East Siberia: Results of Field Trip, Summer 2014. Vestnik Permskogo universiteta. Seriâ Geologiâ Вестник Пермского университета. Серия Геология (Online), 1(26), 44-59. https://doi.org/10.17072/psu.geol.26.44
- Paxman, G., Watts, A., Ferraccioli, F., Jordan, T., Bell, R., Jamieson, S., & Finn, C. (1999). Erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica. Earth and Planetary Science Letters, 452, 1-14. https://doi.org/10.1016/j.epsl.2016.07.040
Other (Digital/Visual Media)