Staff profile
Overview
https://apps.dur.ac.uk/biography/image/934
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Mathematical Sciences | |
Co-Director, IHRR / Associate Professor in the Department of Mathematical Sciences in the Institute of Hazard, Risk and Resilience |
Research interests
- Machine Learning
- Uncertainty Quantification
- Forecast evaluation
- Nonlinear time series analysis
- Data Assimilation
- Weather and Climate modelling
- Energy System Optimisation
Publications
Conference Paper
- Bi-Level Low-Carbon Scheduling of Active Distribution Networks with Multiple Technical Virtual Power Plants in the Integrated Electricity and Carbon MarketsLiu, J., Ruan, J., Tang, H., Kazemtabrizi, B., Du, H., Matthews, P. C., & Sun, H. (in press). Bi-Level Low-Carbon Scheduling of Active Distribution Networks with Multiple Technical Virtual Power Plants in the Integrated Electricity and Carbon Markets. Presented at IEEE ISGT (Innovative Smart Grid Technologies), Valleta, Malta.
- An Integrated Stacked Sparse Autoencoder and CNN-BLSTM Model for Ultra-Short-Term Wind Power Forecasting with Advanced Feature LearningLiu, J., Kazemtabrizi, B., Du, H., Matthews, P., & Sun, H. (2025). An Integrated Stacked Sparse Autoencoder and CNN-BLSTM Model for Ultra-Short-Term Wind Power Forecasting with Advanced Feature Learning. In IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society. IEEE. https://doi.org/10.1109/IECON55916.2024.10905784
Journal Article
- Double weighted k nearest neighbours for binary classification of high dimensional genomic dataAli, A., Khan, Z., Du, H., & Aldahmani, S. (2025). Double weighted k nearest neighbours for binary classification of high dimensional genomic data. Scientific Reports, 15(1), Article 12681. https://doi.org/10.1038/s41598-025-97505-2
- Calibration under Uncertainty Using Bayesian Emulation and History Matching: Methods and Illustration on a Building Energy ModelDomingo, D., Royapoor, M., Du, H., Boranian, A., Walker, S., & Goldstein, M. (2024). Calibration under Uncertainty Using Bayesian Emulation and History Matching: Methods and Illustration on a Building Energy Model. Energies, 17(16), Article 4014. https://doi.org/10.3390/en17164014
- Beyond Strictly Proper Scoring Rules: The Importance of Being LocalDu, H. (2021). Beyond Strictly Proper Scoring Rules: The Importance of Being Local. Weather and Forecasting, 36(2), 457-468. https://doi.org/10.1175/waf-d-19-0205.1
- Optimization via Statistical Emulation and Uncertainty Quantification: Hosting Capacity Analysis of Distribution NetworksDu, H., Sun, W., Goldstein, M., & Harrison, G. (2021). Optimization via Statistical Emulation and Uncertainty Quantification: Hosting Capacity Analysis of Distribution Networks. IEEE Access, 9, 118472-118483. https://doi.org/10.1109/access.2021.3105935
- Designing Multimodel Applications with Surrogate Forecast SystemsSmith, L. A., Du, H., & Higgins, S. (2020). Designing Multimodel Applications with Surrogate Forecast Systems. Monthly Weather Review, 148(6), 2233-2249. https://doi.org/10.1175/mwr-d-19-0061.1
- Carbon mitigation unit costs of building retrofits and the scope for carbon tax, a case studyM, R., Du, H., N, W., M, G., T, R., P, T., & S, W. (2019). Carbon mitigation unit costs of building retrofits and the scope for carbon tax, a case study. Energy and Buildings, 203. https://doi.org/10.1016/j.enbuild.2019.109415
- Multi-model cross-pollination in timeDu, H., & Smith, L. A. (2017). Multi-model cross-pollination in time. Physica D: Nonlinear Phenomena, 353-354, 31-38. https://doi.org/10.1016/j.physd.2017.06.001
- Rising Above Chaotic LikelihoodsDu, H., & Smith, L. A. (2017). Rising Above Chaotic Likelihoods. SIAM/ASA/Journal/on/Uncertainty/Quantification, 5(1), 246-258. https://doi.org/10.1137/140988784
- Towards improving the framework for probabilistic forecast evaluationSmith, L. A., Suckling, E. B., Thompson, E. L., Maynard, T., & Du, H. (2015). Towards improving the framework for probabilistic forecast evaluation. Climatic Change, 132(1), 31-45. https://doi.org/10.1007/s10584-015-1430-2
- Probabilistic skill in ensemble seasonal forecastsSmith, L. A., Du, H., Suckling, E. B., & Niehörster, F. (2015). Probabilistic skill in ensemble seasonal forecasts. Quarterly Journal of the Royal Meteorological Society, 141(689), 1085-1100. https://doi.org/10.1002/qj.2403
- Pseudo-Orbit Data Assimilation. Part I: The Perfect Model ScenarioDu, H., & Smith, L. A. (2014). Pseudo-Orbit Data Assimilation. Part I: The Perfect Model Scenario. Journal of the Atmospheric Sciences, 71(2), 469-482. https://doi.org/10.1175/jas-d-13-032.1
- Pseudo-Orbit Data Assimilation. Part II: Assimilation with Imperfect ModelsDu, H., & Smith, L. A. (2014). Pseudo-Orbit Data Assimilation. Part II: Assimilation with Imperfect Models. Journal of the Atmospheric Sciences, 71(2), 483-495. https://doi.org/10.1175/jas-d-13-033.1
- Laplace’s Demon and the Adventures of His ApprenticesFrigg, R., Bradley, S., Du, H., & Smith, L. A. (2014). Laplace’s Demon and the Adventures of His Apprentices. Philosophy of Science, 81(1), 31-59. https://doi.org/10.1086/674416
- Parameter estimation through ignoranceDu, H., & Smith, L. A. (2012). Parameter estimation through ignorance. Physical Review E, 86(1), Article 016213. https://doi.org/10.1103/physreve.86.016213
- Exploiting dynamical coherence: A geometric approach to parameter estimation in nonlinear modelsSmith, L. A., Cuéllar, M. C., Du, H., & Judd, K. (2010). Exploiting dynamical coherence: A geometric approach to parameter estimation in nonlinear models. Physics Letters A, 374(26), 2618-2623. https://doi.org/10.1016/j.physleta.2010.04.032
Supervision students
Tianlin Yang
1S