Staff profile
Dr Mujeeb Chaudhry
Associate Professor
Affiliation | Telephone |
---|---|
Associate Professor in the Department of Engineering | +44 (0) 191 33 41711 |
Academic Visitor in the Department of Physics | |
Fellow of the Wolfson Research Institute for Health and Wellbeing |
Biography
Mujeeb obtained his PhD in Organic Semiconductors and Electronics from the Johannes Kepler University of Linz in 2011. He then undertook postdoctoral research positions at the University of Linz (charge transport and novel materials) and then at the University of Queensland (light-emitting transistors, charge transport, alignment an order, organic optoelectronics), prior to joining Durham University in 2016 on a junior fellowship (funded through Marie-Curie Actions and Institute of Advanced Studies, Durham University). He is now an associate professor in organic electronics and recipient of funding of over £600k through EPSRC, Northern Accelerator, NECEM and Durham University. He has authored more than 55 journal articles, reviews, and book chapters. He is also acting as a referee for numerous high-impact journals as well as national and international grant awarding bodies.
PhD Projects available
Project 1 Emerging Electronics
The rise of novel semiconducting materials provides a vision for the future is to move beyond the existing applications and explore new realms of electronic use rather than replacing existing silicon-based electronics. These materials often expanded the electronic landscape making it more functional, accessible, and sustainable. The focus of this research project is developing emerging electronic materials in four main types of existing applications: electronics, optoelectronics and sensors. This will involve material processing strategies, device architectures, understanding the basics of charge transport and optical mechanism and their applications.
Project 2 Organic light-emitting devices and lasers
Organic semiconductor materials combine novel optoelectronic properties with simple fabrication and the scope for tuning the chemical structure to give desired applications makes them attractive for low cost, flexible, biocompatible and stretchable microelectronic systems that go beyond the scope of conventional electronics. The goal of this PhD project is to develop novel types of organic optoelectronic devices (i.e. light-emitting transistors, light-emitting diodes) to probe the dynamics of material combinations, device architectures in high-frequency electro-optical measurements.
Project 3 Bioelectronics
The focus of this project is interfacing electronics with biological systems. The aim is to develop an understanding of the fundamental processes that take place at the abiotic/biotic interface and to develop better tools for biomedical applications. More specifically, the project involves the use of biological and bio-inspired materials in bio-molecular electronic devices such as an organic electrochemical transistor (OECT), in which the drain current is controlled by the injection of ions into a conductor or semiconductor thin-film channel.
Project 4 Sustainable electronic materials
The project involves the development of sustainable, biodegradable electronics devices. Organic and biomaterials have the potential for greater sustainability that extends across the entire life cycle of electronics, beginning with the use of materials that are synthesized, rather than mined from the earth, and ending with potentially biodegradable or recyclable devices. It is not just the devices themselves that promise to be more eco-friendly than silicon-based electronics, but also their manufacture.
Research interests
- Imperceptible Electronics
- Processing Electronic Materials
- Light Emitting Field Effect Transistors
- Organic LASERs
- Bioelectronics
- Smart nose
- Biomedical Sensors and Transducers
- Photodiodes and Phototransistors
- Self-assembly and thin film morphology
Publications
Chapter in book
Journal Article
- Khan, K., Tareen, A. K., Ahmad, W., Hussain, I., Chaudhry, M. U., Mahmood, A., Khan, M. F., Zhang, H., & Xie, Z. (online). Recent Advances in Non‐Ti MXenes: Synthesis, Properties, and Novel Applications. Advanced Science, 2303998. https://doi.org/10.1002/advs.202303998
- Dang Anh, K., dos Santos, P. L., Saeed, M., Chaudhry, M. U., Bechtold, I. H., Batycki, A., Drewniak, A., Szlapa-Kula, A., & Ledwon, P. (2024). The role of fused thiophene and naphthalene diimide (NDI) in shaping the optical and electrical properties of donor-acceptor polymers. Organic Electronics, 129, Article 107058. https://doi.org/10.1016/j.orgel.2024.107058
- Butt, A. F., Azhar, M., Yousaf, H., Batoo, K. M., Khan, D., Noman, M., Chaudhry, M. U., Naseem, S., & Riaz, S. (2024). Chemically processed CdTe thin films for potential applications in solar cells - Effect of Cu doping. Heliyon, 10(3), Article e24492. https://doi.org/10.1016/j.heliyon.2024.e24492
- Galán-González, A., Pander, P., MacKenzie, R. C. I., Bowen, L., Zeze, D. A., Borthwick, R. J., Thompson, R. L., Dias, F. B., & Chaudhry, M. U. (2023). Nanostructured Channel for Improving Emission Efficiency of Hybrid Light-Emitting Field-Effect Transistors. ACS Photonics, 10(12), 4315-4321. https://doi.org/10.1021/acsphotonics.3c01080
- Miller, L. R., Borthwick, R. J., dos Santos, P. L., & Chaudhry, M. U. (2023). Detection of acetone vapours using solution-processed tin oxide thin-film transistors. MRS Advances, 8, 440–445. https://doi.org/10.1557/s43580-023-00494-5
- Acar, G., Iqbal, M. J., & Chaudhry, M. U. (2021). Large Area Emission in p-Type Polymer-Based Light-Emitting Field-Effect Transistors by Incorporating Charge Injection Interlayers. Materials, 14(4), https://doi.org/10.3390/ma14040901
- Galan Gonzalez, A., Sivan, A. K., Hernández Ferrer, J., Bowen, L., Di Mario, L., Martelli, F., Benito, A. M., Maser, W. K., Chaudhry, M. U., Gallant, A., Zeze, D. A., & Atkinson, D. (2020). Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for Water-Splitting Photoanodes. ACS Applied Nano Material, 3(8), 7781-7788. https://doi.org/10.1021/acsanm.0c01325
- Arthur, J. N., Chaudhry, M. U., Woodruff, M. A., Pandey, A. K., & Yambem, S. D. (2020). Effect of Gate Conductance on Hygroscopic Insulator Organic Field-Effect Transistors. Advanced Electronic Materials, 6(5), Article 1901079. https://doi.org/10.1002/aelm.201901079
- Chaudhry, M. U., Muhieddine, K., Wawrzinek, R., Sobus, J., Tandy, K., Lo, S., & Namdas, E. B. (2020). Organic Light‐Emitting Transistors: Advances and Perspectives. Advanced Functional Materials, 30(20), Article 1905282. https://doi.org/10.1002/adfm.201905282
- Chaudhry, M., Panidi, J., Nam, S., Smith, A., Lim, J., Tezner, K., Patsalos, P., Vourlias, G., Sit, W., Firdaus, Y., Heeney, M., Bradley, D., & Anthopoulos, T. (2020). Polymer Light‐Emitting Transistors With Charge‐Carrier Mobilities Exceeding 1 cm2 V−1 s−1. Advanced Electronic Materials, 6(1), Article 1901132. https://doi.org/10.1002/aelm.201901132
- Nam, S., Chaudhry, M. U., Tetzner, K., Pearson, C., Groves, C., Petty, M. C., Anthopoulos, T. D., & Bradley, D. D. (2019). Efficient and Stable Solution-Processed Organic Light Emitting Transistors using a High-k Dielectric. ACS Photonics, 6(12), 3159-3165. https://doi.org/10.1021/acsphotonics.9b01265
- Chaudhry, M. U., Wang, N., Tetzner, K., Seitkhan, A., Miao, Y., Sun, Y., Petty, M. C., Anthopoulos, T. D., Wang, J., & Bradley, D. D. (2019). Light‐Emitting Transistors Based on Solution‐Processed Heterostructures of Self‐Organized Multiple‐Quantum‐Well Perovskite and Metal‐Oxide Semiconductors. Advanced Electronic Materials, 5(7), Article 1800985. https://doi.org/10.1002/aelm.201800985
- Iqbal, M. J., Haq, H., Riaz, S., Raza, M. A., Iqbal, M. Z., Chaudhry, M. U., & Naseem, S. (2019). On the Operational, shelf life and degradation mechanism in polymer field effect transistors. Superlattices and Microstructures, 126, 125-131. https://doi.org/10.1016/j.spmi.2018.12.022
- Wawrzinek, R., Sobus, J., Chaudhry, M. U., Ahmad, V., Grosjean, A., Clegg, J. K., Namdas, E. B., & Lo, S.-C. (2019). Mobility Evaluation of [1]Benzothieno[3,2‑b][1]benzothiophene Derivatives: Limitation and Impact on Charge Transport. ACS Applied Materials and Interfaces, 11(3), 3271-3279. https://doi.org/10.1021/acsami.8b16158
- Chaudhry, M. U., Tetzner, K., Lin, Y.-H., Nam, S., Pearson, C., Groves, C., Petty, M. C., Anthopoulos, T. D., & Bradley, D. D. (2018). Low-Voltage Solution-Processed Hybrid Light-Emitting Transistors. ACS Applied Materials and Interfaces, 10(22), 18445-18449. https://doi.org/10.1021/acsami.8b06031
- Chaudhry, M. U., Muhieddine, K., Wawrzinek, R., Li, J., Lo, S.-C., & Namdas, E. B. (2018). Nano-Alignment in Semiconducting Polymer Films: A Path to Achieve High Current Density and Brightness in Organic Light Emitting Transistors. ACS Photonics, 5(6), 2137-2144. https://doi.org/10.1021/acsphotonics.8b00011
- Ullah, M., Wawrzinek, R., Nagiri, R. C., Lo, S.-C., & Namdas, E. B. (2017). UV-Deep Blue-Visible Light-Emitting Organic Field Effect Transistors with High Charge Carrier Mobilities. Advanced Optical Materials, 5(8), Article 1600973. https://doi.org/10.1002/adom.201600973
- Ullah, M., Tandy, K., Clulow, A. J., Burn, P. L., Gentle, I. R., Meredith, P., Lo, S.-C., & Namdas, E. B. (2017). Host-Free Blue Phosphorescent Dendrimer Organic Light-Emitting Field-Effect Transistors and Equivalent Light-Emitting Diodes: A Comparative Study. ACS Photonics, 4(4), 754-760. https://doi.org/10.1021/acsphotonics.6b01019
- Wawrzinek, R., Muhieddine, K., Ullah, M., Koszo, P. B., Shaw, P. E., Grosjean, A., Maasoumi, F., Stoltzfus, D. M., Clegg, J. K., Burn, P. L., Namdas, E. B., & Lo, S.-C. (2016). Orange-Red-Light-Emitting Field-Effect Transistors Based on Phosphorescent Pt(II) Complexes with Area Emission. Advanced Optical Materials, 4(11), 1867-1874. https://doi.org/10.1002/adom.201600460
- Ullah, M., Wawrzinek, R., Maasoumi, F., Lo, S.-C., & Namdas, E. B. (2016). Semitransparent and Low-Voltage Operating Organic Light-Emitting Field-Effect Transistors Processed at Low Temperatures. Advanced Optical Materials, 4(7), 1022-1026. https://doi.org/10.1002/adom.201600050
- Ullah, M., Lin, Y.-H., Muhieddine, K., Lo, S.-C., Anthopoulos, T. D., & Namdas, E. B. (2016). Hybrid Light-Emitting Transistors Based on Low-Temperature Solution-Processed Metal Oxides and a Charge-Injecting Interlayer. Advanced Optical Materials, 4(2), 231-237. https://doi.org/10.1002/adom.201500474
- Ullah, M., Yambem, S. D., Moore, E. G., Namdas, E. B., & Pandey, A. K. (2015). Singlet Fission and Triplet Exciton Dynamics in Rubrene/Fullerene Heterojunctions: Implications for Electroluminescence. Advanced Electronic Materials, 1(12), Article 1500229. https://doi.org/10.1002/aelm.201500229
- Muhieddine, K., Ullah, M., Maasoumi, F., Burn, P. L., & Namdas, E. B. (2015). Hybrid Area-Emitting Transistors: Solution Processable and with High Aperture Ratios. Advanced Materials, 27(42), 6677-6682. https://doi.org/10.1002/adma.201502554
- Ullah, M., Armin, A., Tandy, K., Yambem, S. D., Burn, P. L., Meredith, P., & Namdas, E. B. (2015). Defining the light emitting area for displays in the unipolar regime of highly efficient light emitting transistors. Scientific Reports, 5, Article 8818. https://doi.org/10.1038/srep08818
- Ullah, M., Tandy, K., Yambem, S. D., Muhieddine, K., Ong, W. J., Shi, Z., Burn, P. L., Meredith, P., Li, J., & Namdas, E. B. (2015). Efficient and bright polymer light emitting field effect transistors. Organic Electronics, 17, 371-376. https://doi.org/10.1016/j.orgel.2014.12.014
- Kim, I. K., Pal, B. N., Ullah, M., Burn, P. L., Lo, S.-C., Meredith, P., & Namdas, E. B. (2015). High-Performance, Solution-Processed Non-polymeric Organic Photodiodes. Advanced Optical Materials, 3(1), 50-56. https://doi.org/10.1002/adom.201400385
- Muhieddine, K., Ullah, M., Pal, B. N., Burn, P., & Namdas, E. B. (2014). All Solution-Processed, Hybrid Light Emitting Field-Effect Transistors. Advanced Materials, 26(37), 6410-6415. https://doi.org/10.1002/adma.201400938
- Ullah, M., Tandy, K., Li, J., Shi, Z., Burn, P. L., Meredith, P., & Namdas, E. B. (2014). High-Mobility, Heterostructure Light-Emitting Transistors and Complementary Inverters. ACS Photonics, 1(10), 954-959. https://doi.org/10.1021/ph500300n
- Yambem, S. D., Ullah, M., Tandy, K., Burn, P. L., & Namdas, E. B. (2014). ITO-free top emitting organic light emitting diodes with enhanced light out-coupling. Laser and Photonics Reviews, 8(1), 165-171. https://doi.org/10.1002/lpor.201300148
- Ullah, M., Tandy, K., Yambem, S. D., Aljada, M., Burn, P. L., Meredith, P., & Namdas, E. B. (2013). Simultaneous Enhancement of Brightness, Efficiency, and Switching in RGB Organic Light Emitting Transistors. Advanced Materials, 25(43), 6213-6218. https://doi.org/10.1002/adma.201302649
- Irimia-Vladu, M., Głowacki, E. D., Troshin, P. A., Schwabegger, G., Leonat, L., Susarova, D. K., Krystal, O., Ullah, M., Kanbur, Y., Bodea, M. A., Razumov, V. F., Sitter, H., Bauer, S., & Sariciftci, N. S. (2012). Indigo - A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits. Advanced Materials, 24(3), 375-380. https://doi.org/10.1002/adma.201102619
- Ullah, M., Pivrikas, A., Fishchuk, I. I., Kadashchuk, A., Stadler, P., Simbrunner, C., Sariciftci, N. S., & Sitter, H. (2011). Effect of source-drain electric field on the Meyer–Neldel energy in organic field effect transistors. Applied Physics Letters, 98(22), https://doi.org/10.1063/1.3584131
- Pivrikas, A., Ullah, M., Sitter, H., & Sariciftci, N. S. (2011). Electric field dependent activation energy of electron transport in fullerene diodes and field effect transistors: Gill’s law. Applied Physics Letters, 98(9), Article 092114. https://doi.org/10.1063/1.3557503
- Pivrikas, A., Ullah, M., Singh, T. B., Simbrunner, C., Matt, G., Sitter, H., & Sariciftci, N. S. (2011). Meyer–Neldel rule for charge carrier transport in fullerene devices: A comparative study. Organic Electronics, 12(1), 161-168. https://doi.org/10.1016/j.orgel.2010.10.014
- Irimia-Vladu, M., Troshin, P. A., Reisinger, M., Schwabegger, G., Ullah, M., Schwoediauer, R., Mumyatov, A., Bodea, M., Fergus, J. W., & Razumov, V. F. (2010). Environmentally sustainable organic field effect transistors. Organic Electronics, 11(12), 1974-1990. https://doi.org/10.1016/j.orgel.2010.09.007
- Fishchuk, I. I., Kadashchuk, A. K., Genoe, J., Ullah, M., Sitter, H., Singh, T. B., Sariciftci, N. S., & Bässler, H. (2010). Temperature dependence of the charge carrier mobility in disordered organic semiconductors at large carrier concentrations. Physical review B, 81(4), Article 045202. https://doi.org/10.1103/physrevb.81.045202
- Ullah, M., Taylor, D. M., Schwödiauer, R., Sitter, H., Bauer, S., Sariciftci, N. S., & Singh, T. B. (2009). Electrical response of highly ordered organic thin film metal-insulator-semiconductor devices. Journal of Applied Physics, 106(11), Article 114505. https://doi.org/10.1063/1.3267045