Skip to main content
Degree type

MSc

Course length

1 year full-time

Location

Durham City

Programme code

H1KA09

Ready to Apply?
1

Course details

The MSc in Advanced Mechanical Engineering is a highly respected course that will give you a clear understanding of the engineering challenges faced by industry and society across the world and provide you with the skills and knowledge to tackle them.

Using leading-edge tools and technologies, the course will bring out your engineering best through a combination of theoretical and practical learning. You will work in taught modules, join in group design activity and complete your own research and development project.

The taught modules will introduce you to a range of advanced mechanical engineering topics including turbomachinery design, non-linear stress analysis, fluid mechanics, contact and friction, giving you the extensive knowledge base that is essential for an engineering career.

You will learn vital collaborative working skills by joining with other students in exciting multinational teams to carry out advanced design work to the appropriate design standards, using complex engineering analysis tools.

A key feature of the course will require you to work independently on a research and development project that will help build your skillset and allow you to demonstrate how you are able to create your own innovative solutions for complex engineering challenges.

Our MSc in Advanced Mechanical Engineering course is hugely fulfilling. Led by our mechanical engineering experts, it will provide you with all the skills and experience you need to build a successful career in industry, in further engineering research or in academia, the choice is yours.

Course structure

Core modules:

Research and Development Project offers you a stimulating opportunity to develop your engineering knowledge. With the approval of the appropriate course director, you will identify and apply the specific methods needed to investigate your chosen subject. You will then generate data and carry out analysis in order to make recommendations and findings that you will present in a report.

Group Design Project sees your participation in a complex engineering system design task which will develop your knowledge of system design, introduce the concept of interdisciplinary design teams and will enable you to apply knowledge gained in lectures to a complex engineering problem.

Fluid Mechanics provides an advanced understanding of fluid mechanics. It will introduce you to analytical methods and models used in the field and ultimately will enable you to become familiar with the subject and able to apply the methods and models appropriately.

Future Vehicles 4 deals in depth with future transport vehicles, offering an overview of such devices and explaining their working principles as well as their future technical and economic constraints and possible solutions. The module will also introduce you to analytical methods and simulation tools for system design and analysis.

Non-Linear Solid Mechanics 4 introduces an overview of the subject, enabling you to develop a high level of knowledge and problem-solving using numerical and analytical techniques. The focus will be on material and geometric non-linearity and contact and friction.

Renewable Energy Technologies 4 covers the characteristics of major renewable energy technologies as well as explaining their working principles. Areas featured will include the renewable energy technology landscape, wind turbine design and operation, wind farm design and operation, off-shore and on-shore wind, and thermal renewables. You will develop an understanding of the technical and economic constraints of such technology and the solutions.

Turbomachinery and Propulsion 4 gives you an advanced level of understanding of turbomachinery operation and design and of propulsion cycles and their applications. Subjects covered will include non-dimensional parameters for turbomachinery and their meaning, axial compressor and turbine analysis and design, the operation of modern turbomachinery design system, the theory of propulsion and the definition of performance parameters, principles of operation of ramjets, turbojets, turboprops and turbofans and analysis of those engine types.

In recent years, optional modules have included:

  • Internet of Everything 4
  • Optimisation 4
  • Environmental Engineering 4

Learning

The course offers an inspiring and varied learning experience combining traditional lectures and tutorials with group work and the opportunity to demonstrate your skills and abilities by completing an individual research and development project.

Core modules taught through 38 hours of lectures, coursework and experiments conducted in our well-equipped laboratories will give you the essential grounding in advanced mechanical engineering technologies.

The group design project will not only deepen your engineering knowledge but also enhance your presentation skills and your ability to project manage and to work in a team with fellow students.

You will also complete an individual research and development project, with the support of a supervisor who will hold regular meetings to check on your progress and to discuss any planning issues. This will include up to 12 hours of quality contact time with your supervisor and more than 500 hours of research work and preparation, during which you will be supported by the Department’s technicians and research staff.

As well as the core modules, you will also select one of three optional modules that you feel will fit comfortably with your mechanical engineering interests and meet any learning development needs.

Assessment

Course assessment is thorough and includes a combination of project work, written exams and presentations.

A mid-term assessment is carried out to ensure your research and development project is on track and following the completion of the project, you will be required to submit a report on your work, in the style and format of a research paper. You will also have an oral examination centring on the technical aspects of your project.

Finally, you will be required to create and deliver a presentation of your project in poster form to staff and colleagues.

Entry requirements

A UK first or upper second-class honours degree or equivalent in engineering, sciences (physics) or a relevant related subject. Plus the usual language requirement.

If you are an international student who does not meet the requirements for direct entry to this degree, you may be eligible to take a pre-Masters pathway programme at the Durham University International Study Centre.

English language requirements

Fees and funding

The tuition fees for 2025/26 academic year have not yet been finalised, they will be displayed here once approved.

The tuition fees shown are for one complete academic year of full time study, are set according to the academic year of entry, and remain the same throughout the duration of the programme for that cohort (unless otherwise stated).

Please also check costs for colleges and accommodation.

Scholarships and Bursaries

We are committed to supporting the best students irrespective of financial circumstances and are delighted to offer a range of funding opportunities. 

Find out more about Scholarships and Bursaries

Career opportunities

Engineering and Computing Sciences, School of

No information is available at present - please consider using our Ask Us facility for assistance.

Department information

Engineering and Computing Sciences, School of

No information is available at present - please consider using our Ask Us facility for assistance.

Apply

Find out more:

Apply for a postgraduate course (including PGCE International) via our online portal.  

Visit Us

The best way to find out what Durham is really like is to come and see for yourself!

Join a Postgraduate Open Day
  • Date: 01/09/2023 - 31/08/2024
  • Time: 09:00 - 17:00
Find out more
Self-Guided Tours
  • Date: 01/09/2023 - 31/08/2024
  • Time: 09:00 - 16:00
Find out more

Similar courses

Biomedical Engineering - MSc

Program Code: H1KH09
Start: September 2025
Biomedical Engineering

Civil Engineering - MSc

Program Code: H1KB09
Start: September 2025
Civil Engineering

Electrical Engineering - MSc

Program Code: H1KD09
Start: September 2025
Electrical Engineering

Electronic Engineering - MSc

Program Code: H1KE09
Start: September 2025
Electronic Engineering

Renewable and Sustainable Energy - MSc

Program Code: H1KF09
Start: September 2025
Renewable and Sustainable Energy